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Résumé

Bien qu’ils soient capables de représenter des fonctions très complexes, les réseaux de neu-
rones profonds sont entraînés à l’aide de variations autour de la descente de gradient, un
algorithme qui est basé sur une simple linéarisation de la fonction de coût à chaque itération
lors de l’entrainement. Dans cette thèse, nous soutenons qu’une approche prometteuse pour
élaborer une théorie générale qui expliquerait la généralisation des réseaux de neurones, est
de s’inspirer d’une analogie avec les modèles linéaires, en étudiant le développement de Tay-
lor au premier ordre qui relie des pas dans l’espace des paramètres à des modifications dans
l’espace des fonctions.

Cette thèse par article comprend 3 articles ainsi qu’une bibliothèque logicielle. La bi-
bliothèque NNGeometry (chapitre 3) sert de fil rouge à l’ensemble des projets, et introduit
une Interface de Programmation Applicative (API) simple pour étudier la dynamique d’en-
trainement linéarisée de réseaux de neurones, en exploitant des méthodes récentes ainsi que
de nouvelles accélérations algorithmiques. Dans l’article EKFAC (chapitre 4), nous propo-
sons une approchée de la Matrice d’Information de Fisher (FIM), utilisée dans l’algorithme
d’optimisation du gradient naturel. Dans l’article Lazy vs Hasty (chapitre 5), nous com-
parons la fonction obtenue par dynamique d’entrainement linéarisée (par exemple dans le
régime limite du noyau tangent (NTK) à largeur infinie), au régime d’entrainement réel, en
utilisant des groupes d’exemples classés selon différentes notions de difficulté. Dans l’article
NTK alignment (chapitre 6), nous révélons un effet de régularisation implicite qui découle
de l’alignement du NTK au noyau cible, au fur et à mesure que l’entrainement progresse.

Mots-clés. Apprentissage profond, réseaux de neurones, généralisation, optimisation, théo-
rie de l’apprentissage
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Abstract

Despite being able to represent very complex functions, deep artificial neural networks are
trained using variants of the basic gradient descent algorithm, which relies on linearization
of the loss at each iteration during training. In this thesis, we argue that a promising way to
tackle the challenge of elaborating a comprehensive theory explaining generalization in deep
networks, is to take advantage of an analogy with linear models, by studying the first order
Taylor expansion that maps parameter space updates to function space progress.

This thesis by publication is made of 3 papers and a software library. The library NNGe-
ometry (chapter 3) serves as a common thread for all projects, and introduces a simple
Application Programming Interface (API) to study the linearized training dynamics of deep
networks using recent methods and contributed algorithmic accelerations. In the EKFAC
paper (chapter 4), we propose an approximate to the Fisher Information Matrix (FIM), used
in the natural gradient optimization algorithm. In the Lazy vs Hasty paper (chapter 5),
we compare the function obtained while training using a linearized dynamics (e.g. in the
infinite width Neural Tangent Kernel (NTK) limit regime), to the actual training regime,
by means of examples grouped using different notions of difficulty. In the NTK alignment
paper (chapter 6), we reveal an implicit regularization effect arising from the alignment of
the NTK to the target kernel as training progresses.

Keywords. Deep learning, neural networks, generalization, optimization, learning theory
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List of acronyms and abbreviations

AI Artificial Intelligence

API Application Programming Interface

BN Batch Normalization (Ioffe & Szegedy, 2015)

C-scores Consistency scores (Jiang et al., 2021)

CIFAR Canadian Institute For Advanced Research

CKA Centered Kernel Alignment (Cristianini et al., 2001)

GPT Generative Pre-trained Transformer (Brown et al., 2020)

GPU Graphical Processing Unit is a hardware component with support
for vectorized computations

EKFAC Eigenvalue corrected Kronecker-Factored Approximate Curva-
ture (George et al., 2018)

FIM Fisher Information Matrix
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ImageNet ImageNet is a popular challenge based on image classification
and segmentation

KFAC Kronecker-Factored Approximate Curvature (Martens & Grosse,
2015)

KFE Kronecker-Factored Eigenbasis (George et al., 2018)

KL divergence the Kullback-Leibler divergence is a measure of how different are
two probability distributions

MLP Multi-Layer Perceptron

MNIST Mixed National Institute of Standards and Technology refers to
the dataset of handwritten digits (LeCun et al., 2010)

NNGeometry Neural Network Geometry (George, 2021)

NTK Neural Tangent Kernel (Jacot et al., 2018)

ResNet Residual Networks (He et al., 2016a)

ReLU Rectified Linear Units

RKHS Reproducing Kernel Hilbert Space
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SGD Stochastic Gradient Descent

SVD Singular Value Decomposition

SVM Support Vector Machine

VGG Visual Geometry Group, usually refers to a convolutional net-
work architecture (Simonyan & Zisserman, 2015)
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Chapter 1

Introduction

I first heard about artificial neural networks during my undergraduate studies in 2012 at
École des Mines in Paris. I implemented gradient descent on a hard-coded 2-layers multilayer
perceptron (MLP) in C, in order to solve the task MNIST (LeCun et al., 2010), a 10-fold
classification problem of grayscale images of handwritten digits. Since then, deep learning,
as it is now called, underwent dramatic progress, driven by the incremental discovery of
new network architectures, the increase in compute and storage capabilities, the availability
of data, and the growing interest of private companies and publicly funded research labs.
Between 2015 when I first knocked at the door of the Lisa1 lab, and 2022 now that I am
finishing my PhD at Mila’s brand-new facilities, the community had grown at least 5-fold,
as can e.g. be measured by the number of papers published at NeurIPS, one of the leading
conference about deep learning.

This thesis relates my contribution to the field these last 5 years.

1.1. High level introduction and motivation
Nowadays, deep learning is used in many commercial applications, where it is often

confounded with Artificial Intelligence (AI) in the general public. The most impressive
success of deep learning started with image classification, where convolutional architectures
such as AlexNet (Krizhevsky et al., 2017), VGG (Simonyan & Zisserman, 2015), and ResNet
(He et al., 2015) successfully improved the state of the art on the popular challenge ImageNet
(Deng et al., 2009). Since then, deep learning techniques have also conquered automatic
text translation (Sutskever et al., 2014), prediction of protein folding structure (Senior et al.,
2020), general purpose dialog systems (Brown et al., 2020), game engines such as chess and
go (Silver et al., 2018), image generation from a text description (Ramesh et al., 2022) and
many other applications.

1The Laboratoire d’Informatique des Systèmes Adaptatifs (LISA) was a lab at Université de Montréal before
it merged with other Montréal labs to become Mila.



In short, deep learning (Goodfellow et al., 2016) is inspired by biological neurons, with the
intuition that arranging many basic units (neurons) in a large network (the neural network)
can produce versatile functions able to solve a variety of tasks. These models are tuned
using a database of annotated examples, in an analogous way as a child that is taught by
their parents to distinguish animal species. This procedure is often referred to as training or
learning. A formal, more precise description of deep learning can be found in Chapter 2.

The tremendous success of deep learning is mostly based on experiments and heuristics.
In fact, most improvements at solving tasks with deep learning are often the result of common
sense in tweaking the network architecture, and trial and error until a satisfactory predictor
can be trained. This empirical progress has far outpaced theory, despite significant effort
by the deep learning theory community (e.g. Kawaguchi et al., 2017). A comprehensive
theoretical framework has yet to emerge, even for simple datasets and network architectures.
This thesis contributes to this goal.

A question remains whether it is even relevant to seek for a theoretical framework ex-
plaining deep learning: Even with the lack of it, deep models work, that is, on many tasks
they give good predictions on previously unseen examples. To some extent, the state of the
field is comparable to the steam machine invented in the 18th century, which has preceded
the discovery of theoretical principles describing its inner working (i.e. thermodynamics) in
the 19nth century.

Leaving aside the purely intellectual challenge of trying to understand how things work
that arguably drives every researcher, there are some compelling practical motivations for a
comprehensive theoretical understanding of deep learning. In critical applications, such as
automated medical procedures or self-driving cars, it is essential to come with generalization
guarantees, that quantify how effective an algorithm trained on some data will be when used
on previously unseen data. This is particularly true in the out-of-distribution setup, where
the system is deployed in a different environment than the one used for training (e.g. a self-
driving car trained in North America will likely be erratic if used in Europe because typical
traffic signs, car models and crossings are different). Another motivation for advancing
theory is to obtain principled approaches for neural network architecture design and training
procedures. This is especially relevant as deep learning is becoming ubiquitous, requiring
more and more compute capacities in large datacenters, which are very energy-intensive.
Lately, deep learning has been following a trend of increasingly bigger models (e.g. 1011

parameters for GPT-3, Brown et al., 2020), which could be replaced by smaller, more energy
efficient models. On a different subject, a concerning failure mode of deep models for image
classification is their tendency to treat different subgroups of people differently (e.g. based
on their skin color or their gender, as discussed in Buolamwini & Gebru, 2018), or more
generally their lack of interpretability.
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To tackle the challenge of improving our understanding of deep learning theory, we start
from a striking observation: contrasting with the versatility and the complexity of the func-
tions obtained at the end of the training procedure, the optimization algorithm at the heart
of most deep learning tasks is in fact very simple: gradient descent relies on the linearization
of the training loss at every iteration (Rumelhart et al., 1985). This thesis studies a slightly
different concept: linearization of the predictor. The works presented focuses on 2 questions:

(1) How to train deep models fast?
(2) What are the principles that govern generalization, i.e. how good is a given network

at prediction on new examples that were not used for learning?

1.2. Challenges
In our attempt at answering these questions, we face the following challenges.
(i) Failure of traditional statistical learning theory approaches

In most pre-2017 machine learning textbooks (e.g. Bishop, 2006), statistical learning
theory predicts a bias-variance trade-off, where learning a model from a higher ca-
pacity function class often results in worse generalization performance. But neural
networks have been proven to be capable of approximating any sufficiently regular
function (Hornik et al., 1989), and can perfectly fit even a high proportion of in-
correctly labeled examples (Zhang et al., 2017a). From this perspective, the high
capacity of classes of neural networks contradicts with their impressive generaliza-
tion ability. During the time of this thesis, this apparent paradox is now no longer
considered true (Neal et al., 2019; Belkin et al., 2018). A double descent phenome-
non where generalization starts improving again passed a certain threshold in model
capacity has been discussed by several authors (Advani & Saxe, 2017; Belkin et al.,
2019; Nakkiran et al., 2020), and other examples of high capacity classes of models
have been put forth (Belkin et al., 2018; Wyner et al., 2017). The focus has now
shifted to the search for implicit bias mechanisms (Neyshabur et al., 2014): among
all functions that can be described by a given architecture, which are the functions
that are actually learned in a limited amount of time given an optimization algorithm
and possibly some form of regularization on the parameters (e.g. weight decay, Han-
son & Pratt, 1988) or the data (e.g. the Mixup data augmentation technique, Zhang
et al., 2017b).

(ii) Characterization of the function obtained after training a single network
Whereas challenge (i) relates to the difficulty of characterizing whole function classes
described by given neural network architectures, the complexity of predicting prop-
erties of even a single realization from one of these classes a priori is also noteworthy:
given a fixed training dataset and starting from given initial parameters, there is
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currently no universally accepted accurate modeling of the final solution that does
not require fully training the model. This contrasts to e.g. the ridge regression,
that admits a closed-form solution. The empirical risk minimization problem of deep
learning is non-convex and non-smooth, can have infinitely many minima, and the
training dynamics are non-linear. Some simplified settings, however, are amenable
to analytical treatment, such as deep linear networks with no activation functions
(Saxe et al., 2014; Gidel et al., 2019), large width networks (Du et al., 2019b) up to
infinite-width limiting regimes (Jacot et al., 2018; Sirignano & Spiliopoulos, 2020) or
using other modelling inspired by kernel methods (Mairal et al., 2014).

(iii) High dimensionality of the optimization problem
The empirical risk minimization problem is the mathematical formalization of the
process of learning with deep networks. It is a sum over N examples in the training
dataset (typically N is in the order 104), of a loss that depends on P parameters
(typically P is in the order 107–1010), where N and P are large and pose different
challenges. We usually address the sum over N by computing stochastic estimates of
the required quantities (i.e. the gradients of the loss) using mini-batches of a few ex-
amples (Cotter et al., 2011), and possibly some variance reduction method (Johnson
& Zhang, 2013; Defazio et al., 2014; Mairal, 2015; Schmidt et al., 2017). The large
number of parameters raises a different issue. Optimization methods that counter-
act ill-conditioned curvature (e.g. the Generalized Gauss-Newton approximation of
Newton’s method, Schraudolph, 2001) require manipulating large P × P matrices,
which are impractical to invert or even store in memory for typical values of P . Prac-
titioners usually resort to diagonal methods such as RMSProp (Tieleman & Hinton,
2012) or Adam (Kingma & Ba, 2015), or use more sophisticated low-rank methods
such as ℓ-BFGS (Liu & Nocedal, 1989).

(iv) Incorporating the structure of the data
The input space of neural network functions generally has high cardinality (e.g. even
tiny 32 × 32 pixels images give an input space of 1024 dimensions). In this space,
training examples are scarce: without any additional assumption on the structure
of the data, doing machine learning on this data would be hopeless. Modelling this
structure is however an additional challenge, especially relevant as deep learning
is deemed to be learning its feature representations from data (Olah et al., 2017).
Training examples also play different roles, with a skewed distribution of a head
that contains the most representative examples, and a tail with examples which are
merely memorized (Feldman & Zhang, 2020). Some examples carry some spuriously
correlated features that can hinder generalization (Sagawa et al., 2020b), and in the
meantime deep networks are able to perfectly fit incorrectly labeled examples while
still generalizing well (Zhang et al., 2017a).
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1.3. Proposed approach
Our proposed approach, and the common thread of this thesis, is the engineer’s first

instinct when faced with a function that is too complex to analyze: linearization. Training
a deep networks consists in starting from initial parameters w0, then running a learning
algorithm that iterates through a sequence of parameter values {wt}0≤t<T until a satisfactory
solution wT is found. We write the function obtained at the end of the training procedure
as a sum of function iterates:

fwT
= fw0 +

T −1∑
t=0

(
fwt+1 − fwt

)
︸ ︷︷ ︸

:=gt

(1.3.1)

gt is the function difference resulting from the step δwt in parameter space going from wt

to wt+1. Each of these function iterates is then locally approximated using their first order
Taylor expansion in w:

gt (x) = ⟨δwt, Φwt(x)⟩+ O(∥δwt∥2) (1.3.2)

This local model is reminiscent of a linear model (e.g. SVM or Logistic Regression)
with features obtained by the mapping Φwt from the input space to a feature space. We
focus on studying the series of tangent features {Φwt}0≤t<T as training progresses. Our
claim, illustrated in 3 different cases throughout this thesis, is that local properties of the
tangent features lead to global insights on the outcome.

1.4. Summary of contributions
This thesis started with the optimization project EKFAC (Chapter 4) where our goal was

to accelerate deep models training. During development of this project, we extensively used
the Fisher Information Matrix (FIM) F = Ex

[
Φwt (x) Φwt (x)⊤

]
, which we later figured

was a sibling object to the Neural Tangent Kernel (NTK) k (x,x′) = ⟨Φwt (x) ,Φwt (x′)⟩
subsequently introduced by Jacot et al. (2018). These give a common thread to the thesis,
that can be summarized as linearization of the training dynamics with respect to the tunable
parameters of deep models.

1st paper, Chapter 3. Our first contribution is a software library, called NNGeometry, that
proposes an Application Programming Interface (API) on top of PyTorch (Paszke et al.,
2019b) to manipulate FIMs, NTKs and Jacobians used in the other projects. The main
challenge is the dimensionality of these matrices or tensors, that would naively require too
much memory and too much compute to handle, even with modern GPUs. In order to address
this challenge, we rely on previously published approximate techniques (Martens et al., 2018;
Ollivier, 2015; George et al., 2018) that can be accessed through a unified interface, and we
introduce new algorithmic enhancements to perform operations implicitly, allowing to use
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NNGeometry even on large networks. A second challenge is that PyTorch, as well as most
other deep learning frameworks (Bergstra et al., 2011; Abadi et al., 2016), are specialized
to the very task of training deep networks, whereas in order to compute FIMs, NTKs and
Jacobians, we need to hack their internal mechanisms.

2nd paper, Chapter 4. We introduce an approximate to the FIM, called EKFAC, that
drastically reduces the memory and the computational requirements to perform standard
linear algebra operations. Compared to the previously published method KFAC (Martens
& Grosse, 2015; Grosse & Martens, 2016) from which it is inspired, EKFAC gives a more
accurate estimate of the FIM, and allows for fast re-estimation when parameters vary slowly.
We use EKFAC as a natural gradient (Amari, 1998) optimizer in order to accelerate training.
In a variety of setups, EKFAC improves over other benchmarked methods in terms of progress
per iteration, and progress per elapsed time.

3rd paper, Chapter 5. In a variety of settings, starting from the same initialization, we
empirically compare the training dynamics of 2 regimes of interest: i) the full standard deep
learning training regime for which we do not yet have tools for a precise analysis even for
simple 2-layers networks with non-linearities and ii) the linearized regime at initialization
using the feature map Φw0 . This linearized regime ii) boils down to a kernelized linear model
that is amenable to analysis, for underparameterized models (e.g. in the popular textbook
Bishop, 2006) or more recently in the overparameterized regime (e.g. in the review by Bartlett
et al., 2021). We propose to normalize training progress and compare the trajectory of both
regimes in the function space (as opposed to the parameter space), by evaluating the functions
using examples ranked by different notions of difficulty, instead of performing a Fourier
analysis as in Rahaman et al. (2019); Zhang et al. (2021). This reveals a comparatively more
pronounced sequentialization for the non-linear regime, where easy and more representative
examples are prioritized while more difficult and rarer examples are essentially ignored during
a first phase of training, suggesting an implicit bias of deep learning towards directions
supported by these most representative examples. We reproduce these empirical findings in
a simplified 2-layers parameterization that is amenable to analytical treatment in 3 setups
that mimic our larger scale experiments.

4th paper, Chapter 6. We analyze the time-varying NTK or equivalently the tangent
features, throughout the course of training. Using basic algebraic observations, we link the
spectrum of the NTK to the evolution of the learned function. We empirically observe that
the effective rank of the NTK diminishes as training progresses, which we interpret as a
selection of a few number of directions in the function space. Further, we observe that
the NTK aligns to the target kernel, when evaluated on both the training or test datasets.
This alignment has long been used as a criterion for selecting kernels that generalize well
in kernel learning (Cristianini et al., 2001). The increase in alignment suggests an implicit
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regularization mechanism, that we exploit by deriving a new Rademacher complexity measure
for families of functions built from a sequence of kernels. We perform a sensitivity analysis
of this measure as we train different models with a varying number of parameters/a varying
amount of noise in the training dataset, and we observe that it correlates well with the
generalization.

1.5. Other contributions not included in the thesis
During my PhD at Mila, I also contributed to the following projects, that are not part

of this thesis:
• In Revisiting loss modelling for unstructured pruning (Laurent et al., 2020), we evalu-

ated pruning methods for deep networks that select which parameters to prune using
saliency scores based on minimally changing the training loss after pruning.
• In Continual learning in deep networks: an analysis of the last layer (Lesort et al.,

2021), we studied the influence of the parameterization of the last layer on the ability
of deep learning networks to learn tasks sequentially in continual learning setups.
• In The dynamics of functional diversity throughout neural network training (Zam-

paro et al., 2021), we studied the role of different sources of randomness (different
initialization, different mini-batch order, ...) in finding diverse trained models, in the
context of (deep) ensembles.
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Chapter 2

Brief introduction to machine learning and
deep networks

In this section, we briefly present the concepts and notation that we will be using throughout
the document. This section is intentionally left short and compact since we expect the reader
to be already familiar with machine learning and deep networks. It serves as a refresher and
a presentation of notations.

2.1. Supervised machine learning
Supervised machine learning consists in estimating an unknown function f : X → Y from

an input space X to an output space Y , given a dataset D of (possibly noisy) realizations
of f at given values of x ∈ X , generally independently sampled from a probability density
p (x). D = {(xi,yi = f (xi)) : i ∈ J1,nK} is called the training set.

Example 1. In the CIFAR10 image classification task (Krizhevsky & Hinton,
2009), X is the space of 32 × 32 × 3 images arranged as a 3d tensors (2 spatial
dimensions and 3 channels for RGB layers), Y is the discrete space of 10 classes
{airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck}. p (x) would be a probabil-
ity density that puts mass on real images belonging to the classes in Y and 0 elsewhere.
In practice p (x) is never explicitly used since modelling it is a challenge by itself1. We
instead have access to the dataset of samples D of 60.000 pictures of real objects with their
associated true class. The task is to find f that maps an image to its true class.

Expected risk. Given a family of functions F called the hypothesis space, our criterion for
choosing a candidate function f ∗ is to seek for a minimizer of the expected risk L obtained

1in some sense p (x) is given by the laws of physics that govern the world.



using a loss function ℓ : Y × Y → R+ that depends on the task:

f ∗ = arg min
f̂∈H

Ex∼p(x)
[
ℓ
(
f̂ (x) ,f (x)

)]
︸ ︷︷ ︸

:=L(f̂) (expected risk)

(2.1.1)

We will refer to the process of finding f̂ that minimizes the expected risk L
(
f̂
)

as training
or learning.

Empirical risk. In real world applications we do not know the true distribution p (x) but
we only have access to a limited number of realizations {f (xi)}i∈J1,nK arranged in the dataset
D. We are thus unable to compute the expectation over x that appears in the expected risk,
and we estimate it using a quantity called the empirical risk:

L
(
f̂
)

:= 1
n

n∑
i=1

ℓ
(
f̂ (xi) ,yi

)
(2.1.2)

Our main interest is not to learn by heart the examples of the dataset D : we want
our candidate function to be able to generalize to unseen values in the input space X . A
good candidate f̂ should simultaneously minimize the empirical risk and make sure that
the discrepancy between the expected risk and the empirical risk is reasonably small. This
discrepancy L

(
f̂
)
− L

(
f̂
)

is called the generalization gap.
However, even supposing that the true function f belongs to the hypothesis space F ,

then we are not guaranteed to recover it. In practice, the problem is often under specified
(D’Amour et al., 2020): F possibly includes infinitely many functions that perfectly minimize
the loss on the training examples but give different predictions outside the training dataset.
Depending on the choice of minimizer made by the learning algorithm, we get a different
prediction accuracy on unseen examples not included in the training set.

Parametric models. In this document we will focus on parametric functions fw where
w is a vector of parameters of dimension d. The hypothesis class is the family of such
functions F = {fw : w ∈ C} where C ⊂ Rd defines the set of accepted values for w. Instead
of manipulating raw functions, we can now explore the hypothesis space by varying w. We
define a cost function: C : Rd → R+ that maps a vector w to the empirical risk of the
corresponding function fw:

C (w) := L (fw) (2.1.3)

In the case of parametric functions, supervised machine learning algorithms minimize
the empirical risk L by varying w using optimization techniques on the cost function C,
while making sure that the generalization gap stays small. One way of controlling this
generalization gap, is to regularize the optimization algorithm, by biasing it toward certain
solutions, e.g. that impose some regularity on the function.
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2.2. Linear models and RKHS
Linear models present a first parameterization both very expressive in that they are

able to represent a diversity of functions, and also simpler to analyze using well understood
theoretical tools.

Linear models are functions fw (x) = ⟨w,ϕ (x)⟩ written as an inner product between a
parameter vector w ∈ Rp and a data representation or feature map ϕ : X → Rp that maps
input examples to a feature space.

Example 2 (Ridge regression). Given a feature function ϕ : X → Rd that maps input
vectors x to their data representation ϕ (x), we define our hypothesis space as the family
of functions that can be written as an inner product between a parameter vector w ∈ Rd

and the feature map ϕ: F =
{
fw = ⟨w,ϕ⟩ ,w ∈ Rd

}
. In the case of regression, Y identifies

as R and the loss function ℓ is the squarred error between a predicted value and the true
value: for a sample (xi,yi) ∈ D, ℓ (fw (xi) ,yi) = (fw (xi)− yi)2. We regularize by penalizing
the euclidean norm of w (Krogh & Hertz, 1992). We obtain the optimal value of w that
minimizes the cost function in closed-form:

w∗ := arg min
w

C (w) + λ ∥w∥2
2 =

(
Φ⊤Φ + λnI

)−1
Φ⊤y (2.2.1)

where Φ =


−ϕ (x1)⊤ −

...
−ϕ (xn)⊤ −

 is called the design matrix of features for all examples in

D, and y = (y1, . . . ,yn)⊤ is their corresponding true output.

Kernels. Instead of working with parameter vectors, it is sometimes more convenient to
write w as a linear combination of the features given by training set examples weighted by
a ∈ Rn:

w = Φ⊤a (2.2.2)

We define k : X ×X → R the kernel function k (x,x′) = ⟨ϕ (x) ,ϕ (x′)⟩ and we can rewrite
fw as a linear combination of k applied to training set examples:

fw (x) =
n∑

i=1
ai ⟨ϕ (xi) ,ϕ (x)⟩ =

n∑
i=1

aik (xi,x) (2.2.3)

Kernels can be directly defined without explicitely computing ϕ (x). This is particularly
useful when the dimension of the parameter space is larger than the number of training
examples (in fact it can even be ∞).

RKHS. For a given symmetric positive semidefinite kernel k, the space of functions

F =
{

f (·) =
n∑

i=1
cik (xi,·) , n ∈ N,∀i ∈ J1,nK , ci ∈ R, xi ∈ X

}
(2.2.4)
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is called the Reproducing Kernel Hilbert Space (RKHS) associated with k. Mercer’s theorem
states that there exist an orthonormal basis {uj} of F and nonnegative eigenvalues {λi} such
that:

k (x,x′) =
+∞∑
j=1

λjuj (x) uj (x′) (2.2.5)

Given a kernel, we can thus get back to defining feature maps ϕ : X → Rd using the
eigenfunctions ϕj =

√
λjuj. For a function f ∈ F , we define the RKHS norm ∥·∥RKHS by

means of the inner product ∥f∥2
RKHS = ⟨f,f⟩RKHS and in particular for parametric functions

fw = ∑
j wjuj, :

∥fw∥2
RKHS = ⟨fw,fw⟩ (2.2.6)

=
〈∑

j

wjuj,
∑

j

wjuj

〉
(2.2.7)

=
∑

j

w2
j (2.2.8)

For a function fw = ⟨w,ϕ⟩, and given 2 points x and x′ in X , Cauchy-Schwarz’s inequality
allows us to use the RKHS norm and get an upper bound on the variation of fw:

|fw (x)− fw (x′)| ≤ ∥w∥H ∥ϕ (x)− ϕ (x′)∥H (2.2.9)

In particular, we seek candidate functions f that are sensitive to variations in relevant
feature directions while ignoring irrelevant ones. From this we see that for a given ϕ, regu-
larizing the RKHS norm ∥w∥Hwill regularize the function fw.

Example 3 (Ridge regression continued). Using the same setup as in example 2, we can
write the solution of the ridge regression algorithm using the kernel function:

f ∗ (·) =
n∑

i=1
cik (xi,·) with c = (K + λnI)−1 y (2.2.10)

where Kij = k (xi,xj) is a n× n matrix called the Gram matrix.

2.3. Deep networks
In the last section, the hypothesis space contained linear models of a parameter w. Neural

networks, being able to represent more complex functions without requiring to hand-design
features, have proven very successful at solving many different tasks. We now describe this
family of functions.
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2.3.1. Neural networks

Neural networks are a family of parametric functions arranged as a composition of func-
tions called layers:

fw (x) = g(D)
wD
◦ g(D−1)

wD−1
◦ . . . ◦ g(1)

w1 (x) (2.3.1)

D is called the depth: it is the number of such composed functions.
For the current document, we will restrict our study to feed-forward networks. For layer

i, we define the following elements: a(i) is the activation, σ(i) is the activation function or
non-linearity, W (i) is the weight matrix and we append a scalar constant 1 to the vector a(i−1)

to form ã(i−1) =
 a(i−1)

1

 in order to add a bias term given by the last row of the matrix

W (i) (sometimes called homogeneous notation). Each layer maps activation a(i−1) from the
previous layer, to a new transformed activation a(i), given by the following expression:

a(i) = g(i)
wi

(
a(i−1)

)
= σ(i)

(
s(i)
)

= σ(i)

W (i)

 a(i−1)

1

 = σ(i)
(
W (i)ã(i−1)

)
(2.3.2)

We identify a(0) as the input vector x ∈ X . Each activation a(i) gives a new representation
of x (Bengio et al., 2013). After training a deep networks at solving a task, we observe in
practice that these representations become more and more useful for solving the task at
hand. See for instance Olah et al. (2017) for a visual presentation of such representations
for an image classification task.

This arrangement of linear mappings interleaved with non-linear transformations yields
a particular structure in the geometry of the function space, that we describe more precisely
and exploit in Chapter 4.

Overparameterization. In current real applications, the depth D ranges from 1 to the
order of 1000 (He et al., 2016b), and the size of the vector of parameters w can be as large as
in the order of d = 108 (Simonyan & Zisserman, 2015), hence the designation deep networks.
By contrast, the training dataset D typically contains a number of examples in the order
of 104. Given the expressiveness of deep networks with as many parameters (Hornik et al.,
1989), the hypothesis class is large enough to include deep networks that are able to learn
the training examples by heart while behaving erratically for unseen examples. In practice,
trained networks give surprisingly good predictions. The reason for their success is not yet
fully understood. We contribute some insights in Chapters 5 and 6.
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2.3.2. Gradient descent

Deep networks are usually trained using (variants of) the gradient descent algorithm on
the scalar cost C (w). The parameters are iteratively updated in order to minimize the
empirical risk where each update is given by the steepest descent direction of the empirical
risk with respect to the parameters:

w(t+1) ← w(t) − η∇C
(
w(t)

)
(2.3.3)

where η is the scalar learning rate. The gradients ∇C
(
w(t)

)
are obtained using an

efficient implementation of the chain rule called the backpropagation algorithm (Rumelhart
et al., 1985).

We here implicitly hid the choice of the Euclidean distance in the parameter space in
order to define gradients. In 4.2.1 in Chapter 4, we further discuss this choice and describe
the natural gradient algorithm that compute gradients using more relevant distances.

In the case of neural networks, the cost function C is non-convex. However, in a specific
large width limit regime, some recent results proved that gradient descent is able to converge
to a global minimum of the cost function C (Du et al., 2019b,a).

2.4. Geometry of function spaces
Throughout the process of optimizing the empirical risk, the steps taken by the algorithm

follow a path in the parameter space given by the successive values w(0),w(1), . . . w(T ). Each
of these parameter values correspond to a function fw(0) ,fw(1) , . . . ,fw(T ) in function space. In
the following chapters, we will be interested in characterizing the distances between these
functions, as measured using a meaningful notion of distance. We first give an intuition of
what is meant by meaningful by illustrating this point in the following example.

2.4.1. Illustrative example: 2 normal distributions

Example 4. Let us consider the family of probability density functions of 1-d normal dis-
tributions parametrized by a mean µ ∈ R and a variance σ2 ∈ R+:

fµ,σ2 (x) = N
(
x|µ,σ2

)
= 1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(2.4.1)

We consider 4 elements of this family fA = f0,1,f
B = f0,2,f

C = f− 1
2 ,1−
√

3
4
,fD = f 1

2 ,1−
√

3
4

(figure 1). Let us first observe that in the parameter space, we can use the canonical euclidean
metric and measure distances between these functions:

dparameter
(
fA,fB

)
= 1 and dparameter

(
fC ,fD

)
= 1 (2.4.2)
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Figure 1. in the (middle) and (right) figures we plot the probability density functions of 4
normal distributions and corresponding 95% quantile. In the (left) figure the same functions are
represented in parameter space. However equally distant in the parameter space, we can observe
that distributions in the left plot are very similar whereas the distributions in the middle plot are
very different.

But if we instead look at their graphs (figure 1 middle and right), we see that the
probability distributions that they represent are very different: points sampled from fA and
fB will likely be concentrated around 0 and their respective 95% quantile will largely overlap,
but points sampled from fC and fD will easily be distinguished since their 95% quantile do
not overlap much.

From this example we see that distances in parameter space are not meaningful for mea-
suring distances between probability distributions. We instead resort to distances measured
on the function space in the next section.

2.4.2. Riemannian metrics on parametric function manifolds

L2 (p) is the space of square integrable functions for the measure p:

∀f ∈ L2 (p) ,
∫

x
f (x)2 p (x) dx <∞ (2.4.3)

In our case, functions are obtained using an immersion w 7→ fw from Rp to L2 (p), so
that F inherits a (sub-)manifold structure. The tangent space TwF at the point fw is the
subspace of L2 (p) spanned by the p gradients (see figure 2).

TwF = span
{

∂fw

∂wi

, i ∈ J1,pK
}

(2.4.4)

Using the tools of differential geometry, we can define a (Riemannian) metric for infin-
itesimal elements in F . In particular for a small displacement δw in parameter space, we
write δfw = fw+δw − fw = ∂fw

∂w δw + o (∥δw∥). Up to first order in δw, δfw will live in the
tangent space TwF . This tangent space helps us define a local metric.
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2−norm in L2 (p). For general functions in L2 (p), we can use the 2−norm

∥δfw∥2
L2 =

∫
x

(fw+δw (x)− fw (x))2 p (x) dx (2.4.5)

and define its corresponding metric in parameter space for infinitesimal steps:

∥δw∥2
Gw

= ⟨δw,Gwδw⟩ (2.4.6)

where Gw is the second moment of the partial derivatives of fw with respect to its
parameters:

Gw = Ex∼p(x)

∂fw (x)
∂w

(
∂fw (x)

∂w

)⊤
 (2.4.7)

For small increments δw, we have the following equality:

∥δfw∥2
L2 = ∥δw∥2

Gw
+ o

(
∥δw∥2

2

)
(2.4.8)

Since we do not have access to the true distribution over x, we instead estimate Gw using
examples from the training dataset:

G̃w = 1
n

n∑
i=1

∂fw (xi)
∂w

(
∂fw (xi)

∂w

)⊤

(2.4.9)

G̃w is sometimes called the empirical Fisher since it resembles the Fisher Information
Matrix that we describe below but Kunstner et al. (2019) and Thomas et al. (2019) make
the argument that it is a misnomer so we will just call it the empirical L2 metric.

Probability distributions and their density functions. If we identify our functions
fw (z) = p (z|w) as being probability density functions of distributions on the random vari-
able z then the canonical natural metric (Amari, 1985) is:

∥δfw∥2
Fw

= ⟨δw,Fwδw⟩ (2.4.10)

where Fw is the Fisher Information Matrix (FIM).

Fw = Ez∼fw(z)

∂ log fw (z)
∂w

(
∂ log fw (z)

∂w

)⊤
 (2.4.11)

This metric is the second order Taylor series expansion of the KL divergence
KL (fw+δw (z) ∥fw (z)) for quantifying how much does the probability distribution with
density function fw+δw (z) differ from the probability distribution with density function
fw (z):

KL (fw+δw (z) ∥fw (z)) = 1
2 ⟨δw,Fwδw⟩+ o

(
∥δw∥2

)
(2.4.12)
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Figure 2. Left: Tangent spaces. Right: Different learning paths in the function manifold

Empirical estimation for supervised learning. In supervised learning, we instead iden-
tify our functions fw (x) as conditional probability densities p (y|x)2. In this case, the for-
malism above also applies with p (z) = p (y|x,w) p (x). The distribution over x is estimated
using its empirical estimator:

F̃w = 1
n

n∑
i=1

Ey∼p(y|x,w)

∂ log fw (x)
∂w

(
∂ log fw (x)

∂w

)⊤
 (2.4.13)

This expression further simplifies for classification and regression tasks (Pascanu & Ben-
gio, 2013)

2.5. Rademacher complexity: a measure of the capacity of
function classes

By characterizing the complexity of a function class, we obtain guarantees on the general-
ization properties of functions chosen from this function class. Other measures of complexity
can also be used, but we only focus on Rademacher complexity in this document. A more
thorough discussion can be found in Boucheron et al. (2004).

The Rademacher complexity measures the richness of a hypothesis class, as the expected
value of the maximum correlation between a random vector variable σ sampled uniformly
from {−1,1}n and a function in F , evaluated at n datapoints drawn from p (x):

Definition 1 (Rademacher complexity). Given a random dataset D = {x1, . . . ,xn} of n

elements sampled from p (x), and a uniformly sampled random variable σ ∈ {−1,1}n, we
define the Rademacher complexity of F as:

Rn (F ,p) = ED,σ

[
1
n

sup
f∈H

∣∣∣∣∣
n∑

i=1
σif (xi)

∣∣∣∣∣
]

(2.5.1)

2For regression, p (y|x,w) = N (y|fw (x) ,1) and for classification p (y = c|x,w) = (fw (x))c for all classes c.
For a thorough discussion, see Bishop (2006), chapter 3.1.1 for regression and 4.2 for classification.
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Using the Rademacher complexity, we get an upper bound on the generalization gap for
any function in F :

Proposition 2.5.1 (Rademacher complexity based generalization bound). With probability
at least 1 − δ over the choice of the random dataset D of size n, every function f ∈ F
satisfies:

L (f)− L (f) ≤ 2Rn (F) +
√

log (1/δ)
2n

(2.5.2)

Computing the Rademacher complexity for a given machine learning would require know-
ing the true distribution p (x). We only have access to samples from p (x), so we use an
estimator of the Rademacher complexity called the empirical Rademacher complexity:

Definition 2 (Empirical Rademacher complexity). For a given datasets D of n elements
sampled from p (x), and uniformly sampled random variable σ ∈ {−1,1}n, we define the
empirical Rademacher complexity of H as:

R̂n (F ,D) = Eσ

[
1
n

sup
f∈H

∣∣∣∣∣
n∑

i=1
σif (xi)

∣∣∣∣∣
∣∣∣∣∣D
]

(2.5.3)

In the following we will consider the dependency on the dataset D implicit and simplify
the notation to R̂n (F) = R̂n (F ,D). This estimator also gives us a bound on the general-
ization gap, very similar to the one obtained with the Rademacher complexity, but slightly
less tight.

Proposition 2.5.2 (Empirical Rademacher based generalization bound). With probability
at least 1 − δ over the choice of the random dataset D of size n, every function f ∈ F
satisfies:

L (f)− L (f) ≤ 2R̂n (F) +
√

log (2/δ)
n

(2.5.4)

This concludes our general background chapter. We now turn to our contributed work.
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Chapter 3

NNGeometry: Easy and Fast Fisher
Information Matrices and Neural Tangent

Kernels in PyTorch

Prologue
In this chapter, we focus on the practicalities in linearizing the training dynamics of neu-

ral networks with respect to displacements in parameter space. The main challenge is the
dimensionality of this vector space, which can be up to 107 even on modest architectures.
We give examples of techniques using deep networks that rely on some form of linearization,
sometimes without explicitly acknowledging it, with the common challenge that it involves
computing jacobian matrices whose size can be overwhelming. Practical solutions have been
proposed in previous literature, which are here unified in a common Application Program-
ming Interface (API) in Python. In addition, we contribute new algorithmic tricks that make
it possible to perform operations on very large matrices implicitly.

Article Details. NNGeometry: Easy and Fast Fisher Information Matrices and Neural
Tangent Kernels in PyTorch. Thomas George (George, 2021) I gave a presentation of
NNGeometry during the PyTorch Ecosystem Day event in 2021. The library is avail-
able at https://github.com/tfjgeorge/nngeometry/, the documentation can be found
at https://nngeometry.readthedocs.io/en/latest/.

Context. After working with Fisher Information Matrices (FIM) for the EKFAC project
(George et al., 2018), I turned to computing finite-width Neural Tangent Kernels (NTK)
during training in the NTK alignment project (Baratin et al., 2021). Both are very close
sibling objects in that they share the same non-zero spectrum, even if they are being used
by different research communities. I felt that a simple and common API for working with
FIMs and NTKs was missing, as I was reusing code parts between several projects.

https://github.com/tfjgeorge/nngeometry/
https://nngeometry.readthedocs.io/en/latest/


In a more general context, the NTK paper of Jacot et al. (2018) popularized the idea that
kernelized linear models could help analyze deep neural networks in the deep learning theory
community. In particular, subsequent works analyzed generalization in overparameterized
linear models, using the argument that in certain specific infinite-width limiting regimes,
deep network training dynamics are fully explained by the training dynamics of a linear
model using the neural tangent kernel.

On the other hand, FIMs or equivalent are used in several unrelated subfields of deep
learning such as continual learning (Kirkpatrick et al., 2017), pruning (Singh & Alistarh,
2020) or Bayesian deep learning (Maddox et al., 2019). We felt that these could benefit for
more efficient representations such as KFAC (Martens & Grosse, 2015) or EKFAC (George
et al., 2018), but that it would be burdensome to implement a codebase specialized to their
use. It felt more natural to split the task into: i) propose a technique that use the FIM and
ii) choose the best representation of this FIM that trades off accuracy and efficiency.

Developments. NNGeometry seems to be moderately popular as measured by Github in-
dicators: as of this writing, 131 stars, 15 forks and around 10 unique clones weekly. It is
difficult to precisely measure its audience and usage, but we are quite confident that it has
saved time to many deep learning practitioners.

Since the release of NNGeometry, the PyTorch project has started releasing its functorch
core library that makes implementation of NNGeometry features easier or in some cases
redundant. Concurrently to NNGeometry that is built on top of PyTorch, the developers of
the Neural Tangents library (Novak et al., 2019) backed by Google and built on top of Jax
independently started implementing similar functionalities for computing implicit operations
with Jacobians and finite-width NTKs (Novak et al., 2022). While it can be discouraging
to have a Google project as a "competitor", it is however a good sign that NNGeometry’s
features are needed by other projects and thus a sensible research avenue.

Personal Contribution. This is a single person project, in which I have conducted design,
implementation, documentation, algorithmic improvements, experiments and paper writing.
A small part of the code is borrowed from other open-source projects, and the API has
matured from numerous discussions with other users of the library, either from Mila or
through the Github issue tracker.

3.1. Introduction
Practical and theoretical advances in deep learning have been accelerated by the develop-

ment of an ecosystem of libraries allowing practitioners to focus on developing new techniques
instead of spending weeks or months re-implementing the wheel. In particular, automatic
differentiation frameworks such as Theano (Bergstra et al., 2011), Tensorflow (Abadi et al.,
2016) or PyTorch (Paszke et al., 2019b) have been the backbone for the leap in performance
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of last decade’s increasingly deeper neural networks as they allow to compute average gra-
dients efficiently, used in the stochastic gradient algorithm or variants thereof. While being
versatile in neural networks that can be designed by varying the type and number of their
layers, they are however specialized to the very task of computing these average gradients,
so more advanced techniques can be burdensome to implement.

Since the growing popularity of neural networks thanks to their always improving perfor-
mance, other techniques have emerged. Amongst them, we highlight some involving Fisher
Information Matrices (FIM) and Neural Tangent Kernels (NTK). Approximate 2nd order
(Schraudolph, 2001) or natural gradient techniques (Amari, 1998) aim at accelerating train-
ing, elastic weight consolidation (Kirkpatrick et al., 2017) proposes to fight catastrophic for-
getting in continual learning and WoodFisher (Singh & Alistarh, 2020) tackles the problem
of network pruning so as to minimize its computational footprint while retaining prediction
capability. These 3 methods all use the Fisher Information Matrix, but resort to using dif-
ferent approximations when turning to implementation. In parallel, following the work of
(Jacot et al., 2018), a line of work study the NTK in either its limiting infinite-width regime,
or during training of actual finite-size networks.

All of these papers follow a start by formalizing the problem in a concise math formula,
then face the experimental challenge that computing the FIM or NTK involves performing
operations for which off-the-shelf automatic differentiation libraries are not well adapted.
An even greater turnoff comes from the fact that these matrices scale with the number of
parameters (for the FIM) or the number of examples in the training set (for the empirical
NTK). This is prohibitively large for modern neural networks involving millions of parameters
or large datasets, a problem circumvented by a series of techniques to approximate the
FIM (Ollivier, 2015; Martens & Grosse, 2015; George et al., 2018). NNGeometry aims at
making use of these approximations effortless, in order to accelerate development or analysis
of new techniques, allowing to spend more time on the theory and less time in fighting
implementation bugs. NNGeometry’s interface is designed to be as close as possible to
maths formulas. In summary, this paper and library contribute:

• We introduce NNGeometry by describing and motivating design choices.
– A unified interface for all FIM and NTK operations, regardless of how these

are approximated.
– Implicit operations for ability to scale to large networks.

• Using NNGeometry, we get new empirical insights on FIMs and NTKs:
– We compare different approximations in different scenarios.
– We scale some NTK experiments to TinyImagenet.
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using a KFAC Fisher
1 F_kfac = FIM(model=model ,
2 loader =loader ,
3 representation =PMatKFAC ,
4 n_output =10)
5
6 v = PVector . from_model (model)
7
8 vTMv = F_kfac .vTMv(v)

using implicit computation
1 F_full = FIM(model=model ,
2 loader =loader ,
3 representation =PMatDense ,
4 n_output =10)
5
6 v = PVector . from_model (model)
7
8 vTMv = F_full .vTMv(v)

Figure 1. Computing a vector-Fisher-vector product v⊤Fv, for a 10-fold classification model
defined by model, can be implemented with the same piece of code for 2 representations of the FIM
using NNGeometry, even if they involve very different computations under the hood.

3.2. Preliminaries
3.2.1. Network linearization

Neural networks are parametric functions f (x,w) : X × Rd → Rc where x ∈ X are
covariates from an input space, and w ∈ Rd are the network’s parameters, arranged in layers
composed of weight matrices and biases. The function returns a value in Rc, such as the c

scores in softmax classification, or c real values in c-dimensional regression. Neural networks
are trained by iteratively adjusting their parameters w(t+1) ← w(t) + δw(t) using steps δw(t)

typically computed using the stochastic gradient algorithm or variants thereof, in order to
minimize the empirical risk of a loss function.

In machine learning, understanding and being able to control the properties of the so-
lution obtained by an algorithm is of crucial interest, as it can provide generalization guar-
antees, or help design more efficient or accurate algorithms. Contrary to (kernelized) linear
models, where closed-form expressions of the empirical risk minimizer exist, deep networks
are non-linear functions, whose generalization properties and learning dynamics is not yet
fully understood. Amongst the recent advances toward improving theory, is the study of the
linearization (in w) of the deep network function f (x,w):

f (x,w + δw) = f (x,w) + J (x,w) δw + o (∥δw∥) (3.2.1)

where J (x,w) = ∂f(x,w)
∂w is the Jacobian with respect to parameters w, computed in

(w, x), mapping changes in parameter space δw to corresponding changes in output space
using the identity δf (x,w,δw) = J (x,w) δw. The Landau notation o (pronounced "little-o")
means a function whose exact value is irrelevant, with the property that limx→0

o(x)
x

= 0, or
in other words that is negligible compared to x for small x. For tiny steps δw, we neglect the
term o (∥δw∥) thus f is close to its linearization. It happens for instance at small step sizes,
or for networks trained in the large-width limit with the specific parameter initialization
scheme studied in Jacot et al. (2018).
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3.2.2. Parameter space metrics and Fisher Information Matrix

While neural networks are trained by tuning their parameters w, the end goal of machine
learning is not to find the best parameter values, but rather to find good functions, in
a sense that depends on the task at hand. For instance, different parameter values can
represent the same function (Dinh et al., 2017). On the contrary 2 parameter space steps
δw1 and δw2 with same euclidean norm can provide very different changes in a function
(δf (x,w,δw1) ̸= δf (x,w,δw2)). In order to quantify changes of a function, one generally
defines a distance1 on the function space. Examples of such distances are the Lk-norms,
Wasserstein distances, or the KL divergence used in information geometry.

To each of these function space distances correspond a parameter space metric. We
continue our exposition by focusing on the KL divergence, which is closely related to the
Fisher Information Matrix, but our library can be used for other function space distances.

Suppose f is interpreted as the log-probability of a density p: log p (x,w) = f (x,w), the
KL divergence gives a sense of how much the probability distribution changes when adding
a small increment δw to the parameters of f (x,w). We can approximate it as:

KL (p (x,w) ∥p (x,w + δw)) =
∫

x∈X
log

(
p (x,w)

p (x,w + δw)

)
dp (x,w) (3.2.2)

= 1
2

∫
x∈X

 1
p (x,w) J (x,w) δw

 2dp (x,w) +o
(
∥δw∥2

)
(3.2.3)

where we used this form in order to emphasize how steps in parameter space δw affect
distances measured on the function space: equation 3.2.3 is the result of (-) taking a step δw
in parameter space; (-) multiplying with J (x,w) to push the change to the function space;
(-) weight this function space change using p (x,w)−1; (-) square and sum. In particular,
because of the properties of the KL divergence, there is no second derivative of f , even
if equation 3.2.3 is equivalent to taking the 2nd order Taylor series expansion of the KL
divergence. We write in a more concise way:

KL (f (x,w) ∥f (x,w + δw)) = δw⊤Fwδw + o
(
∥δw∥2

)
(3.2.4)

which uses the d×d FIM Fw =
∫

x∈X
1

p(x,w)2 J (x,w)⊤ J (x,w) dp (x,w). We can now define
the norm ∥δw∥Fw

= δw⊤Fwδw used in the natural gradient algorithm (Amari (1998), also
see Martens (2020) for a more thorough discussion of the FIM), in elastic weight consolidation
(Kirkpatrick et al., 2017), or in pruning (Singh & Alistarh, 2020). Other quantities also share
the same structure of a covariance of parameter space vectors, such as the covariance of loss
gradients in TONGA (Le Roux et al., 2008), the second moment of loss gradients2 (Kunstner

1We here use the notion of distance informally.
2The second moment of loss gradients is sometimes called empirical Fisher.
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et al., 2019; Thomas et al., 2020), or posterior covariances in bayesian deep learning (e.g. in
Maddox et al. (2019)). In more generality, any metric defined by a positive define matrix on
the parameter space can be used with NNGeometry. These metrics define their corresponding
geometry – hence the name NN (for neural networks) geometry.

3.2.3. Neural Tangent Kernel

Another very active line of research around the linearization of equation 3.2.1 is to take
inspiration from the rich literature on kernel methods by defining the neural tangent kernel
(NTK):

kw (x,y) = J (x,w) J (y,w)⊤ (3.2.5)

In the limit of networks with infinite width, Jacot et al. (2018) have shown that the
tangent kernel remains constant through training using gradient descent when the parameters
are initialized using a specific scheme, which allows to directly import learning theory ideas
from linear models to deep learning. While this regime is of theoretical interest, it arguably
does not explain what happens at finite width, where the NTK evolves during training.

Kernels are functions of the whole input space X × X , but we often only have access to
a limited number of samples in a datasets. It is often convenient to evaluate the kernel at
points xi of a training or a test set, called the Gram Matrix (Kw)ij = kw (xi,xj). Note that
in the case where the output space is multidimensional with dimension c, then Kw is in fact
a 4d tensor.

3.3. Design and implementation
3.3.1. Challenges

Current deep learning frameworks such as PyTorch and Tensorflow are well adapted to
neural network training, which generally requires computing average gradients over param-
eters, used in optimizers such as Adam and others. However, when going to more advanced
algorithms or analysis techniques involving FIMs and NTKs, practitioners typically have to
hack the framework’s internal mechanisms, which is time-consuming, error-prone, and results
in each project having their own slightly different implementation of the very same technique.
We here list the difficulties in computing FIMs and NTKs using current frameworks:

Per-example gradients. FIMs and NTKs require per-example Jacobians J (xi,w) of a
dataset (xi)i. This can be obtained by looping through examples x, but at the cost of not
using mini-batched operations, thus missing the benefit of using GPUs. Instead, NNGeom-
etry’s Jacobian generator extensively use efficient techniques (Goodfellow, 2015; Rochette
et al., 2019).
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Figure 2. Schematic description of NNGeometry’s main components

Memory usage and computational cost. A FIM matrix is d × d where d is the total
number of parameters. With a memory cost in O (d2), this is prohibitively costly even
for moderate size networks. Typical linear algebra operations have a computational cost in
either O (d2) (e.g. matrix-vector product) or even O (d3) (e.g. matrix inverse). NNGeometry
instead comes with recent, lower memory intensive approximations (Martens & Grosse, 2015;
Ollivier, 2015; George et al., 2018).

3.3.2. NNGeometry’s design

The main components of NNGeometry are sketched in figure 2. Abstract mathematical
objects (such as the FIM, parameter space vectors, ...) are represented by concrete represen-
tations that define how these objects are stored in memory, and how operations are internally
performed. Generators populate these representations using a dataset of examples.

3.3.2.1. Abstract objects. In section 3.2, we have worked with abstract mathematical
objects δw, δf (x, w, δw), J (x,w), Fw and Kw. These mathematical objects are identified
to Python classes in NNGeometry.

Parameter space. We start with the parameter space. Previously, we identified the pa-
rameter space as Rd, but it is in fact often implemented as a set of weight matrices and
bias vectors w = {W1,b1, . . . ,Wl,bl} in deep learning frameworks. Parameter space vectors
are represented by the class PVector in NNGeometry, which is essentially a dictionary of
PyTorch Parameters, with basic algebra logic: PVectors can be readily added, subtracted,
and scaled by a scalar with standard python operators. As an illustration wsum = w1 + w2

internally loops through all parameter tensors of w1 and w2 and returns a new PVector w_sum.
Similarly, and more interestingly, parameter space metrics such as the FIM are repre-

sented by classes prefixed with PMat. For instance, the natural gradient δnat = −ηF −1∇wL
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applies the linear operator w 7→ F −1w to the parameter space vector ∇wL, and can be im-
plemented cleanly and concisely using delta_nat = - eta * F.solve(nabla_L), even if the "solve"
operation internally involves different computations for different layer types and choice of
approximation.

The structure of the parameter space is internally abstracted using the LayerCollection
class. This gives the flexibility of defining our parameter space as parameters of a subset
of layers, in order to treat different layers in different ways. An example use case is to
manipulate a mix of KFAC for linear layers parameters, and block-diagonal for GroupNorm
layers, as KFAC is not defined for the latter.

Function space. Function space vectors FVector define objects associated to vectors of the
output space, evaluated on a dataset of n examples X. As an example, getting back to the lin-
earization δf (x,w,δw) = J (x,w) δw, we define δf (X) = (δf (x1, w,δw) , . . . ,δf (xn, w,δw))
as the Rc×n function space vector of output changes evaluated at examples X. Gram ma-
trices of the NTK are linear operators on this space, represented by objects prefixed with
FMat.

Mixed objects. Borrowing from the vocabulary of differential geometry, we also define
PushForward objects that are linear operators from parameter space to function space, and
PullBack objects that are linear operators from function space to parameter space.

3.3.2.2. Concrete representations. These abstract objects are implemented in mem-
ory using concrete representations. NNGeometry comes with a number of representations.
Amongst them, most notably, are parameter space approximations proposed in recent liter-
ature (Ollivier, 2015; Martens & Grosse, 2015; Grosse & Martens, 2016; George et al., 2018),
and an implicit representation for each abstract linear operator, that allows to compute
linear algebra operations without ever computing or storing the matrix in memory.

PMatDense (resp FMatDense) and PMatDiag represent the full dense matrix and the di-
agonal matrix. PMatLowRank only computes and stores the c × n × d Jacobian J (X,w) for
all examples of the given dataset, which is often much smaller than the dense d× d FIM.

Next come representations that do not consider neural networks as black-box functions,
but instead take advantage of the layered structure of the networks: PMatBlockDiag uses
dense blocks of the FIM for parameters of the same layer, and puts zeros elsewhere, ignoring
cross-layer covariance. PMatQuasiDiag (Ollivier, 2015) uses the full diagonal and adds to each
bias parameter the interaction with the corresponding row of the weight matrix. PMatKFAC
uses KFAC (Martens & Grosse, 2015) and its extension to convolution layers KFC (Grosse
& Martens, 2016) to approximate each layer blocks with the kronecker product of 2 much
smaller matrices, thus saving memory and compute compared to PMatBlockDiag. PMatEKFAC
uses the EKFAC (George et al., 2018) extension of KFAC.
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The last representation that comes with this first release of NNGeometry, PMatImplicit,
allows computing certain linear algebra operations using the full dense matrix implicitly,
without the need to ever store it in memory, which permits scaling to large networks (see
experiments in section 3.4). As an illustration, the vector-matrix-vector product v⊤Fv can
be computed using equation 3.2.3, without ever needing to compute and store the d×d FIM.

Each representation comes with its advantages and drawbacks, allowing to trade off be-
tween memory and approximation accuracy. For a new project, we recommend starting with
a small network using the PMatDense representation, then gradually switching to represen-
tations with a lower memory footprint while experimenting with actual modern networks.

While linear algebra operations associated to each representation internally involve very
different mechanisms, NNGeometry’s core contribution is to give easy access to these oper-
ations by using the same simple methods as illustrated in the code snippet 1.

3.3.2.3. Generators. Now that we have defined concrete classes, we need a mechanism to
populate them using examples x coming from a dataset. This is the role of NNGeometry’s
generators. It computes actual entries of the matrices, depending on the representation.
A naive implementation would be to loop through examples {xi}i, compute f (xi, w) and
compute gradients with respect to parameters using PyTorch’s automatic differentiation. It
would be rather inefficient as it would not make usage of parallelism in GPUs. Instead,
NNGeometry’s generator allows using minibatches of examples by intercepting PyTorch’s
gradients and using techniques similar to Goodfellow (2015) and Rochette et al. (2019):

Let us consider f (x,w) : X × Rd → Rc. In order to simplify our exposition, we focus
on fully connected layers and suppose that f can be written f (x,w) = σl ◦ gl (·,w) ◦ σl−1 ◦
gl−1 (·,w) ◦ . . . ◦ σ1 ◦ g1 (x,w) where σk are activation functions and gk are parametric affine
transformations that compute pre-activations sk of a layer using a weight matrix Wl and
a bias vector bk with the following expression: sk = gk (ak−1,w) = Wkak−1 + bk. For each
example xi in a minibatch, we denote these intermediate quantities by superscripting s

(i)
k

and a
(i)
k . The backpropagation algorithm applied to computing gradients of a sum S =∑

i f (xi,w) works by sequentially computing intermediate gradients ∂f(xi,w)
∂s

(i)
k

from top layers

to bottom layers. Denote by Dsk =
(

∂f(xi,w)
∂s

(1)
k

⊤
, . . . ,∂f(xi,w)

∂s
(m)
k

⊤
)⊤

the matrix obtained by

stacking these gradients for a minibatch of size m, and ak =
(
a

(1)
k , . . . ,a

(m)
k

)
the corresponding

matrix of activations of the same layer. These are already computed when performing the
backpropagation algorithm, then used to obtain the average gradient w.r.t the weight matrix
by means of the matrix/matrix product ∂

∂Wl
{∑i f (xi,w)} = Ds⊤

k ak. The observation of
Goodfellow (2015) is that we can in addition obtain individual gradients ∂f(xi,w)

∂s
(1)
k

⊤
a

(i)⊤
k , an

operation that can be parallelized efficiently for all examples of the minibatch using the bmm
PyTorch function.
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Instead of reimplementing backpropagation as is for example done in BackPACK (Dangel
et al., 2019), we chose to use PyTorch’s internal automatic differentiation mechanism, as it
already handles most corner cases encountered by deep learning practitioners: we do not
have to reimplement backward computations for every new layer, but instead we just have
to compute individual gradients by intercepting gradients with respect to pre-activations
Dsk.

Other generators are to be added to NNGeometry in the future, either by using different
ways of computing the Jacobians, or by populating representations using other matrices such
as the Hessian matrix, or the KFRA approximation of the FIM (Botev et al., 2017).

3.4. Experimental showcase
Equipped with NNGeometry, we experiment with a large network: We train a 24M

parameters Resnet50 network on TinyImagenet. We emphasize that given the size of the
network, we would not have been able to compute operations involving the true F without
NNGeometry’s PMatImplicit representation, since F would require 2.3 petabytes of memory
(24M × 24M × 4 bytes for float32).

3.4.1. Quality of FIM approximations

We start by comparing the accuracy of several PMat representations at computing various
linear algebra operations. We use a Monte-Carlo estimate of the FIM, where we use 5
samples from p (y|x) for each example x. Here, since this TinyImagenet is a classification
task, p (y|x) is a multinoulli distribution with the event probabilities given by the softmax
layer. We compare the approximate value obtained for each representation, to a "true" value,
obtained using the full matrix with the PMatImplicit representation. For trace and v⊤Fv,
we compare these quantities using the relative difference

∣∣∣approx−true
true

∣∣∣. For Fv, we report
the cos-angle 1

∥F v∥2∥Fapproxv∥2
⟨Fv,Fapproxv⟩, and for the solve operation, we report the cos-

angle between v and (Fapprox + λI)−1 (F + λI) v. Since the latter is highly dependent on
the Tikhonov regularization parameter λ, we plot the effect on the cos-angle of varying the
value of λ. The results can be observed in figures 3, 4, 5, 6.

From this experiment, there is no best representation for all linear algebra operations.
Instead, this analysis suggest to use PMatKFAC when possible for operations involving the
inverse FIM, and PMatEKFAC for operations involving the (forward) FIM. Other representa-
tions are less accurate, but should not be discarded as they can offer other advantages, such
as lower memory footprint, and faster operations.
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3.4.2. Neural Tangent Kernel eigendecomposition

In the line of recent work that study the finite-width NTK (Baratin et al., 2021; Paccolat
et al., 2021), we observe the evolution of the NTK during training. We use a Resnet50
architecture trained on the 200 classes of TinyImagenet, but in order to be able to plot a 2d
matrix for analysis, we extract the univariate function fc1,c2 (x,w) = (f (x,w))c2

−(f (x,w))c1
,
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Figure 7. NTK analysis for 50 examples of class c1 and 50 examples of class c2 at various points
during training. (top row) Gram matrix of the NTK. Each row and column is normalized by

1√
diag (G)

for better visualization. We observe that the NTK encodes some information about

the task later in training, since it highlights intra-class examples. (bottom row) Examples are
projected on the 1st 2 principal components of the Gram Matrix at various points during training.
While points are merely mixed at initialization, the NTK adapts to the task and becomes a good
candidate for kernel PCA since examples become linearly separable as training progresses.

that defines a binary classifier of class c2 vs class c1. We plot at different points during training
i) the Gram matrix of examples from the 2 classes c1 and c2 (figure 7, top row) and ii) a
kernel PCA of points from classes c1 and c2 projected on the 2 first principal components
(figure 7, bottom row). The Gram matrix is computed for valid set examples of classes c1

and c2.
On this larger network, we reproduce the conclusion of Baratin et al. (2021) and Paccolat

et al. (2021) that the NTK evolution is not purely random during training, but instead adapts
to the task in a very specific way.
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3.5. Conclusion
We introduced NNGeometry, a PyTorch library that allows to compute various linear

algebra operations involving Fisher Information Matrices and Neural Tangent Kernels, using
an efficient implementation that is versatile enough given current usages of these matrices,
while being easy enough to save time for the user. We also introduced implicit operations,
as well as some example usage involving large networks for which we would not otherwise be
able to construct FIMs and NTKs as it would be prohibitively costly.

NNGeometry can be readily used in existing projects, and we hope that it will help make
progress across deep learning subfields as FIMs and NTKs are used in a range of applications.

Equipped with NNGeometry, we are now able to implement an optimization technique
in the next chapter, or analyze the training dynamics in Chapters 5 and 6.
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Chapter 4

Fast approximate natural gradient in a
Kronecker factored Eigenbasis

Prologue
In this chapter, we present an approximation of the Fisher Information Matrix (FIM) of

neural networks, that can be 1/ efficiently computed and stored in memory, even for million-
parameters networks and 2/ efficiently handled (in our case we need to compute the inverse
of the FIM). We design an approximate natural gradient procedure named EKFAC, that
we use to accelerate neural network training, both in number of iterations and in wall-clock
time.

Article Details. Fast approximate natural gradient in a Kronecker factored Eigenbasis.
Thomas George∗, César Laurent∗, Xavier Bouthillier, Nicolas Ballas, Pascal Vincent. The
paper has been published at NeurIPS 2018 (George et al., 2018). Compared to the paper, we
have here added a section introducing more background on the natural gradient algorithm.

∗ Co-first authors.

Context. After the seminal success of AlexNet (Krizhevsky et al., 2017) at beating other
machine learning vision systems in the ImageNet classification challenge, a series of architec-
tures have been proposed (GoogleNet, VGG, ResNet) that increased the number of trainable
parameters to as many as 107 (this number has since gained 4 orders of magnitude). A nat-
ural direction of research was to focus on optimization algorithms capable of handling a very
large number of variables, while providing more efficient steps than SGD. Natural gradient
(Amari, 1998) was an interesting avenue, and had recently been applied to deep networks,
using the KFAC approximate factorization of the FIM. We explored ways to improve over
KFAC both in terms of quality of the approximation, and in terms of efficiency. We were also
inspired by diagonal optimization methods such as RMSProp, Adam, and the quasi-diagonal
method of Ollivier (2015).



This project was also a motivation for starting the development of NNGeometry, since we
had to reimplement our competitor KFAC from scratch (no publicly available implementation
was available at the time).

Developments. Since publication of the paper, EKFAC as an optimization method has
not been used much in practice, since practitioners are more used to choosing SGD with
momentum or Adam as default, and these often provide reasonable choices that are robust
to choice of hyperparameters. Concurrently, GPUs have become much more powerful and
cheaper, default neural network architectures (skip connections, ReLU non-linearities, pa-
rameter initialization schemes) are much easier to train and normalization schemes (such as
batch normalization) are now ubiquitous. Altogether, this renders the entry cost of using
natural gradient optimizers too high. The main follow-ups of EKFAC are thus not optimiza-
tion algorithms, but use the EKFAC parameterization for other purposes.

• Wang et al. (2019) prune a trained network using the KFE, in which candidate
directions for pruning are already at hand as the smaller diagonal coefficient of the
FIM.
• Bae et al. (2018) perform variational inference using a posterior with a Gaussian

distribution whose covariance is captured by projection in the KFE.
• Liu et al. (2018) concurrently explored the idea of rotating the FIM using the SVD

of kronecker factors in order to approximate the FIM in the context of continual
learning.

We provide an open-source PyTorch implementation of the EKFAC natural gradient opti-
mizer at: https://github.com/Thrandis/EKFAC-pytorch, and an EKFAC representation
is available in NNGeometry.

Personal Contribution. With César, we had been implementing modifications of opti-
mizers inspired by natural neural networks (Desjardins et al., 2015), KFAC (Martens &
Grosse, 2015; Grosse & Martens, 2016), and TProp (George, 2018, beginning of chapter 6),
and I came up with the original idea of using the EKFAC factorization. I also contributed
experiments on MLPs and framing our hyperparameter search method, as well as paper
writing and theorem proofs. César implemented and ran innumerable experiments on con-
volutional networks, and was later supported by Nicolas in scaling experiments to larger
networks. Xavier had been working on similar ideas, coming from a different perspective.
Pascal helped formalize the method, and contributed theorems and writing.

4.1. Introduction
Deep networks have exhibited state-of-the-art performance in many application areas,

including image recognition (He et al., 2016a) and natural language processing (Gehring
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et al., 2017). However top-performing systems often require days of training time and a
large amount of computational power, so there is a need for efficient training methods.

Stochastic Gradient Descent (SGD) and its variants are the current workhorse for training
neural networks. Training consists in optimizing the network parameters w (of size nw)
to minimize a cost function C (w), through gradient descent. The negative loss gradient
is approximated based on a small subset of training examples (a mini-batch). The loss
functions of neural networks are highly non-convex functions of the parameters, and the loss
surface is known to have highly imbalanced curvature which limits the efficiency of 1st order
optimization methods such as SGD.

Methods that correct for imbalaced curvature have the potential to speed up gradient
descent. The parameters are then updated as: w← w− ηG−1∇C (w), where η is a positive
learning-rate and G is a preconditioning matrix capturing the local curvature or related
information such as the Hessian matrix in Newton’s method or the Fisher Information Matrix
in Natural Gradient (Amari, 1998, also see section 4.2). Matrix G has a gigantic size d× d

which makes it too large to compute and invert in the context of modern deep neural networks
with millions of parameters. For practical applications, it is necessary to trade-off quality of
curvature information for efficiency.

A long family of algorithms used for optimizing neural networks can be viewed as ap-
proximating the diagonal of a large preconditioning matrix. Diagonal approximations of
the Hessian (Becker et al., 1988) have been proven to be efficient, and algorithms that use
the diagonal of the covariance matrix of the gradients are widely used among neural net-
works practitioners, such as Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), RMSProp
(Tieleman & Hinton, 2012), Adam (Kingma & Ba, 2015). We refer the reader to Bottou
et al. (2016) for an informative review of optimization methods for deep networks, including
diagonal rescalings, and connections with the Batch Normalization (BN) technique (Ioffe &
Szegedy, 2015).

More elaborate algorithms do not restrict to diagonal approximations, but instead aim at
accounting for some correlations between different parameters (as encoded by non-diagonal
elements of the preconditioning matrix). These methods range from Ollivier (2015) who
introduces a rank 1 update that accounts for the cross correlations between the biases and
the weight matrices, to quasi Newton methods (Liu & Nocedal, 1989) that build a running
estimate of the exact non-diagonal preconditioning matrix, and also include block diagonals
approaches with blocks corresponding to entire layers (Heskes, 2000). Factored approxi-
mations such as KFAC (Martens & Grosse, 2015) approximate each block as a Kronecker
product of two much smaller matrices, both of which can be estimated and inverted more
efficiently than the full block matrix, since the inverse of a Kronecker product of two matrices
is the Kronecker product of their inverses.
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In the present work, we draw inspiration from both diagonal and factored approxima-
tions. We introduce an Eigenvalue-corrected Kronecker Factorization (EKFAC) that consists
in tracking a diagonal variance, not in parameter coordinates, but in a Kronecker-factored
eigenbasis. We show that EKFAC is a provably better approximation of the Fisher Informa-
tion Matrix than KFAC. In addition, while computing the Kronecker-factored eigenbasis is
a computationally expensive operation that needs to be amortized, tracking of the diagonal
variance is a cheap operation. EKFAC therefore allows to perform partial updates of our cur-
vature estimate G at the iteration level. We conduct an empirical evaluation of EKFAC on
the deep auto-encoder optimization task using fully-connected networks and CIFAR-10 re-
lying on deep convolutional neural networks where EKFAC shows improvements over KFAC
in optimization.

Organisation of the chapter.
• in section 4.2, we present the natural gradient algorithm and show that it can be

used for optimization but at the cost of inverting a large matrix. We show some
early proposed approximations ;
• in section 4.3, we introduce our new method named EKFAC ;
• in section 4.4, we benchmark EKFAC against other popular algorithms for optimizing

deep networs.

4.2. Natural gradient
We start by discussing the natural gradient algorithm for learning probability distribu-

tions, introduced in Amari (1998). We then motivate its use in the context of neural networks
and show that computing it is too costly too compute it exactly, encouraging the design of
more efficient approximate methods.

4.2.1. Steepest descent in the natural metric

Steepest descent for the euclidean metric. In the deep learning community, the gradient
descent algorithm is often motivated as following the steepest descent direction δw, where
steepness refers to the improvement of the cost function C (w + δw) with respect to a given
budget c of displacement measured in parameter space using the canonical euclidean metric
∥δw∥2. Each iterate of gradient descent incurs an update of the parameter values w(t+1) ←
w(t) + δwGD, where δwGD = −η∇C (w) is the solution to the following problem (up to first
order):

δwGD = arg min
δw

C (w + δw) s.t. ∥δw∥2 ≤ c (4.2.1)
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We replace C (w + δw) by its linearization C (w + δw) = C (w)+∇C (w)⊤ δw+o (∥δw∥)
and neglect the higher order terms o (∥δw∥) for small values of c1. We also introduce a
Lagrange multiplier λ to enforce the constraint ∥δw∥2 ≤ c, which gives:

δwGD = arg min
δw

C (w) +∇C (w)⊤ δw + λ
(
∥δw∥2

2 − c2
)

(4.2.2)

The arg min can be solved in closed form and we obtain:

δwGD = − 1
2λ
∇C (w) (4.2.3)

By writing the learning rate η = 1
2λ

we recover the update of the gradient descent
algorithm as expected2.

Steepest descent for the natural metric on the space of probability distributions.
We now present the natural gradient algorithm. To his end, let us restrict our hypothesis
space H to be a set of parametric functions that represent probability density functions
p (z|w) = fw (z).

Recall from section 2.4 in Chapter 2 that the Fisher Information Matrix (FIM) Fw =
E
[
DwDw⊤

]
can be used as a local metric on the space of probability density functions,

where we denoted Dw = ∂ log p(z|w)
∂w the derivative of the log likelihood. For a small increment

δw the following equality holds:

KL (p (z|w) ∥ p (z|w + δw)) = 1
2 ⟨δw,Fwδw⟩+ o

(
∥δw∥2

)
(4.2.4)

We follow the same procedure as for the (euclidean) gradient descent algorithm, but
instead of measuring the displacement fw+δw − fw using a budget in the parameter space,
we will measure this budget in the function space using the FIM metric:

δwNGD = arg min
δw

C (w + δw) s.t. ∥δw∥Fw
≤ c1 and ∥δw∥2≤ c2 (4.2.5)

The role of c1 is to constrain the natural norm to be small, and the role of c2 is to
account for 2nd order effects in both the cost function C and the local approximation of the
KL. Similarly as for the gradient descent, we replace C (w + δw) by its linearization and
solve the arg min in closed form using Lagrange multipliers to obtain:

δwNGD = −η (Fw + ϵI)−1∇C (w) (4.2.6)

1To be more precise, we need to choose c such that C (w + δw) is well approximated by its linearization,
that is we need to ensure that for all δw such that ∥δw∥2 ≤ c, the second order term in the Taylor expansion
1
2 δw⊤∇2C (w) δw can be neglected compared to the first order term ∇C (w)⊤

δw.
2In order to fulfill the constraint we must set λ = ∥∇C(w)∥2

2c .We instead generally use a constant or decaying
learning rate η so that the actual radius c is adapted depending of the magnitude of the current gradient
∇C (w). For algorithms of the trust region framework, instead of adjusting the learning rate η it is instead
the radius c that varies depending on the success of a step.
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This update rule is called the natural gradient descent algorithm (Amari, 1998). It
requires computing the d × d matrix Fw, and then inverting it, or at least approximately
solve the linear system δwNGD = arg min

δw
∥(Fw + ϵI) δw + η∇C (w)∥ up to desired precision.

In the following discussion, we will set ϵ = 0 and just write (Fw + ϵI) = Fw to simplify
notations.

4.2.2. Natural gradient for optimization

Besides following the steepest descent direction as measured by the canonical metric for
probability distributions (Amari, 1985), it is not entirely clear why using the natural gradient
would accelerate convergence, over any other metric on function spaces, or even the euclidean
metric on the parameter space.

In this section we motivate the use of the natural gradient algorithm for optimization,
namely why would the natural gradient algorithm accelerate convergence to a minimum of
C (w)?

The case of large width 2-layers ReLU networks. Following the work of Du et al.
(2019b,a), a recent preprint (Zhang et al., 2019) shows that in the overparameterized case,
and under some assumptions that seem to hold in practice, natural gradient allows for an
improved convergence rate over gradient descent.

Adaptation to the natural geometry of the function space. Some directions in the
parameter space incur very large moves in the function space, whereas some other directions
do not affect the resulting function much, an observation that we further discuss in chapter
6. By using the natural gradient algorithm, we normalize all directions, so that updates in
directions with large curvature of the FIM will be scaled down and updates in directions
with small curvature of the FIM will be amplified. In that sense, it allows taking larger steps
in directions of low curvature, without increasing a global learning rate that would be too
large for directions of large curvature.

4.2.3. Compute/memory cost and approximations

Matrix Fw has a gigantic size d × d, which makes it too big to compute and invert. In
order to get a practical algorithm, we must find approximations of Fw that keep some of the
relevant curvature information while removing the unnecessary and computationally costly
parts.

Block diagonal approximation. A first simplification, adopted by nearly all prior ap-
proaches, consists in treating each layer of the neural network separately, ignoring cross-layer
terms. This amounts to a first block-diagonal approximation of Fw: each block F (l)

w caters
for the parameters of a single layer l.

68



KFAC approximation. Now F (l)
w can typically still be extremely large. A cheap but very

crude approximation consists in using a diagonal F (l)
w , i.e. taking into account the variance

in each parameter dimension, but ignoring all covariance structure. A less stringent approx-
imation (Heskes, 2000; Martens & Grosse, 2015) is to write F (l)

w as a Kronecker product
F (l)

w ≈ A⊗B (see appendix A.1 for a definition and properties of the Kronecker product ⊗)
which involves two smaller matrices, making it much cheaper to store, compute and invert3.

Specifically for a layer l that receives input ã of size din and computes linear pre-
activations s = Wã of size dout followed by some non-linear activation function, let the
backpropagated gradient of the log likelihood on s be Ds = ∂ log p(z|w)

∂s
. The gradients on

parameters w(l) = vecW will be Dw(l) = ∂ log p(z|w)
∂w(l) = vec(Dsã⊤) = ã ⊗Ds. The Kronecker

factored approximation of corresponding block F (l)
w = E

[
Dw(l)Dw(l)⊤

]
= E

[
ãã⊤ ⊗DsDs⊤

]
will use A = E

[
ãã⊤

]
and B = E

[
DsDs⊤

]
i.e. matrices of size din × din and dout × dout,

whereas the full F (l)
w would be of size dindout × dindout. Using this Kronecker approximation

(known as KFAC) corresponds to approximating entries of F (l)
w as described in the following

proposition:
Proposition 4.2.1 (KFAC Martens & Grosse (2015)). Assuming that ãã⊤ and DsDs⊤ are
uncorrelated (cov

(
ãã⊤,DsDs⊤

)
= 0) we can break the expectation into two parts:

F (l)
w = E

[
ãã⊤

]
⊗ E

[
DsDs⊤

]
:= FKFAC (4.2.7)

Proof. Write cov
(
ãã⊤,DsDs⊤

)
= E

[(
ãã⊤ − Eãã⊤

)
⊗
(
DsDs⊤ − EDsDs⊤

)]
=

E
[
ãã⊤ ⊗DsDs⊤

]
− E

[
DsDs⊤

]
⊗ E

[
ãã⊤

]
. Assuming that cov

(
ãã⊤,DsDs⊤

)
= 0 we

obtain F (l)
w = E

[
ãã⊤ ⊗DsDs⊤

]
= E

[
DsDs⊤

]
⊗ E

[
ãã⊤

]
. □

In practice the assumption that ãã⊤ and DsDs⊤ are uncorrelated approximately holds for
real neural networks as observed in Martens & Grosse (2015).

Approximate natural gradient algorithm using KFAC. Wrapping together the block
diagonal and KFAC approximations, we obtain the new step by computing for each layer:

δw(l)
KFAC = −η

(
F

(l)
KFAC

)−1
∇C

(
w(l)

)
(4.2.8)

= −η
(
A−1 ⊗B−1

)
∇C

(
w(l)

)
(4.2.9)

= −ηB−1∇C
(
W (l)

)
A−1 (4.2.10)

where by a slight abuse of notation we denote by ∇C
(
w(l)

)
the gradient of the cost

function with respect to the parameters of layer l arranged as a vector, and by ∇C
(
W (l)

)
the same gradient but arranged as a matrix so that ∇C

(
W (l)

)
ij

= ∂C

∂W
(l)
ij

.

3Since (A⊗B)−1 = A−1 ⊗B−1.
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This update in eq 4.2.10 further leverage the property of the Kronecker product since we
do not even have to compute the large matrix A−1⊗B−1 but instead we just multiply using
the smaller matrices A−1 and B−1.

4.2.4. Structured curvature

Although this chapter focuses on the Fisher Information Matrix and the natural gradient,
this technique of compressing a curvature matrix as a much smaller matrix made of Kronecker
products is much more general and can be applied to other curvature matrices of neural
networks. Examples of such matrices include:

• the Hessian matrix of the cost function with respect to the parameters whose diagonal
blocks can be written as H(l) = 1

n

∑
i ã

(l)
i ã

(l)⊤
i ⊗ ∇2C

(
s

(l)
i

)
where ∇2C (si) is the

Hessian of the cost function with respect to the pre-activation of layer l, for train set
example i ;
• an approximation thereof called the (generalized) Gauss-Newton matrix (Schrau-

dolph, 2001), whose KFAC factorization has already been extensively studied in Botev
et al. (2017) ;
• the covariance of the individual gradients of the empirical risk analyzed in TONGA

(Le Roux et al., 2008) as a way of tackling the question of the noisy estimate of the
gradients in stochastic gradient descent.

As we have briefly shown in section 4.2.3 this structured curvature comes from the arrange-
ment of computation at the backbone of neural networks: the weight matrices represent linear
maps from the activation of a layer ã to the pre-activation of the next layer s: s = Wã. This
linear map leads to a derivative of the form g = ∂h

∂w = ã ⊗ ∂h
∂s

where h is any function of s

located upstream in the neural network computation flow, and in particular in our case h is
the log likelihood of a given sample.

The approach that we take here is to leverage this structure instead of just using a black
box algorithm such as the conjugate gradient (as in Martens et al. (2010)) for solving the
linear subproblem δwNGD = −ηF −1

w ∇C (w) of the natural gradient algorithm. These 2
approaches have been compared in Martens & Grosse (2015), and KFAC proved faster for
optimization on their benchmarks.

4.3. Proposed method
4.3.1. Motivation: reflexion on diagonal rescaling in different coordinate

bases

Diagonal natural gradient in the canonical euclidean basis. It is instructive to con-
trast the type of "exact" natural gradient preconditioning of the gradient that uses the full

70



Fisher Information Matrix would yield, to what we do when approximating this by us-
ing a diagonal matrix only. Using the full matrix Fw = E[DwDw⊤] yields the natural
gradient update: δwNGD = −ηF −1

w ∇C (w). When resorting to a diagonal approximation
we instead use Fdiag = diag (σ2

1, . . . ,σ2
d) where σ2

i = (Fw)i,i = E[Dw2
i ]. So that update

δwdiag = −ηF −1
diag∇C (w) amounts to preconditioning the gradient vector ∇C (w) by di-

viding each of its coordinates by an estimated second moment σ2
i . This diagonal rescaling

happens in the canonical euclidean basis of parameters w.

True natural gradient in FIM eigenbasis. By contrast, a full natural gradient up-
date can be seen to do a similar diagonal rescaling, not along the initial parameter ba-
sis axes, but along the axes of the eigenbasis of the matrix Fw. Let Fw = USU⊤ be
the eigendecomposition of Fw. The operations that yield the full natural gradient update
F −1

w ∇C (w) = US−1U⊤∇C (w) correspond to the sequence of:
(1) multiplying gradient vector ∇C (w) by U⊤ which corresponds to switching to the

eigenbasis: U⊤∇C (w) yields the coordinates of the gradient vector expressed in that
basis

(2) multiplying by a diagonal matrix S−1, which rescales each coordinate i (in that
eigenbasis) by S−1

ii

(3) multiplying by U , which switches the rescaled vector back to the initial basis of
parameters.

It is easy to show that Sii = E[(U⊤Dw)2
i ]. So similarly to what we do when using a diagonal

approximation, we are rescaling by the second moment of gradient vector components, but
rather than doing this in the initial parameter basis, we do this in the eigenbasis of Fw.
Note that the variance measured along the leading eigenvector can be very different to the
variance along the axes of the initial parameter basis, so the effects of the rescaling by using
either the full Fw or its diagonal approximation can be very different.

KFAC: Diagonal factorization in a Kronecker-factored Eigenbasis. Now what hap-
pens when we use the less crude KFAC approximation instead? We approximate F (l)

w ≈ A⊗B

yielding the update δw(l)
KFAC = −η (A−1 ⊗B−1)∇C

(
w(l)

)
. Let us similarly look at it through

its eigendecomposition. The eigendecomposition of the Kronecker product A⊗B of two real
symmetric positive semi-definite matrices can be expressed using their own eigendecompo-
sition A = UASAU⊤

A and B = UBSBU⊤
B , yielding A ⊗ B = (UASAU⊤

A ) ⊗ (UBSBU⊤
B ) =

(UA ⊗ UB)(SA ⊗ SB)(UA ⊗ UB)⊤. UA ⊗ UB gives the orthogonal eigenbasis of the Kronecker
product, we call it the Kronecker-Factored Eigenbasis (KFE). SA⊗SB is the diagonal matrix
containing the associated eigenvalues. Note that each such eigenvalue will be a product of
an eigenvalue of A stored in SA and an eigenvalue of B stored in SB. We can view the
action of the resulting Kronecker-factored preconditioning in the same way as we viewed the
preconditioning by the full matrix: it consists in
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(1) expressing gradient vector ∇C
(
w(l)

)
in a different basis UA ⊗ UB which can be

thought of as approximating the directions of U ,
(2) doing a diagonal rescaling by SA ⊗ SB in that basis
(3) switching back to the initial parameter space.

Here however the rescaling factor (SA⊗SB)ii is not guaranteed to match the second moment
along the associated eigenvector E[((UA ⊗ UB)⊤Dw)2

i ].
In summary (see Figure 1):
• Full matrix Fw preconditioning will scale by variances estimated along the eigenbasis

of Fw.
• Diagonal preconditioning will scale by variances properly estimated, but along the

initial parameter basis, which can be very far from the eigenbasis of Fw.
• KFAC preconditioning will scale the gradient along the KFE basis that will likely

be closer to the eigenbasis of Fw, but doesn’t use properly estimated variances along
these axes for this scaling (the scales being themselves constrained to being a Kro-
necker product SA ⊗ SB).

- Fisher 
- Diagonal 
- K-FAC 
- EKFAC

Eigenspectrum of 
approximations

Rescaling of the gradient is done along a specific basis; length of vec-
tors indicate (square root of) amount of downscaling. Exact Fisher
Information Matrix rescales according to eigenvectors/values of ex-
act covariance structure (green ellipse). Diagonal approximation
uses parameter coordinate basis, scaling by actual variance measured
along these axes (indicated by horizontal and vertical orange arrows
touching exactly the ellipse), KFAC uses directions that approxi-
mate Fisher Information Matrix eigenvectors, but uses approximate
scaling (blue arrows not touching the ellipse). EKFAC corrects this.

Figure 1. Cartoon illustration of rescaling achieved by different preconditioning strategies

4.3.2. Eigenvalue-corrected Kronecker Factorization (EKFAC)

To correct for the potentially inexact rescaling of KFAC, and obtain a better but still com-
putationally efficient approximation, instead of FKFAC = A⊗B = (UA⊗UB)(SA⊗SB)(UA⊗
UB)⊤ we propose to use an Eigenvalue-corrected Kronecker Factorization: FEKFAC = (UA ⊗
UB)S∗(UA⊗UB)⊤ where S∗ is the diagonal matrix defined by S∗

ii = s∗
i = E[((UA⊗UB)⊤Dw)2

i ].
Vector s∗ is the vector of second moments of the gradient vector coordinates expressed in the
Kronecker-factored Eigenbasis (KFE) UA ⊗ UB and can be efficiently estimated and stored.

In section A.2.1 in appendix, we prove that this S∗ is the optimal diagonal rescaling in
that basis, in the sense that S∗ = arg minS ∥Fw−(UA⊗UB)S(UA⊗UB)⊤∥2

4 s.t. S is diagonal:
it minimizes the approximation error to Fw as measured by Frobenius norm, which KFAC’s

4here ∥·∥2 denotes the Frobenius norm
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corresponding S = SA ⊗ SB cannot generally achieve. A corollary of this is that we will
always have ∥Fw−FEKFAC∥2 ≤ ∥Fw−FKFAC∥2 i.e. EKFAC yields a better approximation of
Fw than KFAC (Theorem 1 proven in Appendix). Figure 1 illustrates the different rescaling
strategies, including EKFAC.

Potential benefits: Since EKFAC is a better approximation of Fw than KFAC (in the
limited sense of Frobenius norm of the residual) it may yield a better preconditioning of
the gradient for optimizing neural networks5. Another benefit is linked to computational
efficiency: even if KFAC yields a reasonably good approximation in practice, it is costly to
re-estimate and invert matrices A and B, so this has to be amortized over many updates:
re-estimation of the preconditioning is thus typically done at a much lower frequency than
the parameter updates, and may lag behind, no longer accurately reflecting the local 2nd

order information. Re-estimating the Kronecker-factored Eigenbasis (KFE) for EKFAC is
similarly costly and must be similarly amortized. But re-estimating the diagonal scaling
s∗ in that basis is cheap, doable with every mini-batch, so we can hope to reactively track
and leverage the changes in 2nd order information along these directions. Figure 2 (right)
provides an empirical confirmation that tracking s∗ indeed allows to keep the approximation
error of FEKFAC small, compared to FKFAC, between recomputations of basis or inverse.
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Figure 2. Left: Gradient correlation matrices measured in the initial parameter basis and in
the Kronecker-factored Eigenbasis (KFE), computed from a small 4 sigmoid layer MLP classifier
trained on MNIST. Block corresponds to 250 parameters in the 2nd layer. Components are largely
decorrelated in the KFE, justifying the use of a diagonal rescaling method in that basis.
Right: Approximation error ∥Fw−F̂ ∥2

∥Fw∥2
where F̂ is either FKFAC or FEKFAC, for the small MNIST

classifier. KFE basis and KFAC inverse are recomputed every 100 iterations. EKFAC’s cheap
tracking of s∗ allows it to drift far less quickly than amortized KFAC from the exact empirical
Fisher.

Dual view by working in the KFE:. Instead of thinking of this new method as an
improved factorized approximation of G that we use as a preconditioning matrix, we can
alternatively view it as applying a diagonal method, but in a different basis where the diagonal
5Although there is no guarantee. In particular FEKFAC being a better approximation of F does not guarantee
that F −1

EKFAC∇C
(
w(l)) will be closer to the natural gradient update direction F −1∇C

(
w(l)) .
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approximation is more accurate (an assumption we empirically confirm in Figure 2 left). This
can be seen by interpreting the update given by EKFAC as a 3 step process: project the
gradient in the KFE (—), apply diagonal natural gradient descent in this basis (—), then
project back to the parameter space (—):

F −1
EKFAC∇C

(
w(l)

)
= (UA ⊗ UB) S∗−1 (UA ⊗ UB)⊤∇C

(
w(l)

)
(4.3.1)

Note that by writing D̃w = (UA ⊗ UB)⊤ Dw the projected gradient in the KFE, the
computation of the coefficients s∗

i simplifies in s∗
i = E[(D̃w)2

i ]. Figure 2 shows gradient
correlation matrices in both the initial parameter basis and in the KFE. Gradient compo-
nents appear far less correlated when expressed in the KFE, which justifies using a diagonal
rescaling method in that basis.

This viewpoint brings us close to network reparameterization approaches such as Fu-
jimoto & Ohira (2018), whose proposal – that was already hinted towards by Desjardins
et al. (2015) – amounts to a reparameterization equivalent of KFAC. More precisely, while
Desjardins et al. (2015) empirically explored a reparameterization that uses only input co-
variance A (and thus corresponds only to "half of" KFAC), Fujimoto & Ohira (2018) extend
this to use also backpropagated gradient covariance B, making it essentially equivalent to
KFAC (with a few extra twists). Our approach differs in that moving to the KFE corre-
sponds to a change of orthonormal basis, and more importantly that we cheaply track and
perform a more optimal full diagonal rescaling in that basis, rather than the constrained
factored SA ⊗ SB diagonal that these other approaches are implicitly using.

Algorithm: Using Eigenvalue-corrected Kronecker factorization (EKFAC) for neural net-
work optimization involves: 1/ periodically (every n mini-batches) computing the Kronecker-
factored Eigenbasis by doing an eigendecomposition of the same A and B matrices as KFAC;
2/ estimating scaling vector s∗ as second moments of gradient coordinates in that implied
basis; 3/ preconditioning gradients accordingly prior to updating model parameters. Algo-
rithm 1 provides a high level pseudo-code of EKFAC, and when using it to approximate
the empirical Fisher. In this version, we re-estimate s∗ from scratch on each mini-batch.
An alternative (EKFAC-ra) is to update s∗ as a running average of component-wise second
moment of mini-batch averaged gradients.

4.4. Experiments
This section presents an empirical evaluation of our proposed Eigenvalue Corrected KFAC

(EKFAC) algorithm in two variants: EKFAC estimates scalings s∗ as second moment of
intrabatch gradients (in KFE coordinates) as in Algorithm 1, whereas EKFAC-ra estimates
s∗ as a running average of squared minibatch gradient (in KFE coordinates). We compare
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Algorithm 1 EKFAC for fully connected networks
Require: n: recompute eigenbasis every n minibatches
Require: η: learning rate
Require: ϵ: damping parameter

procedure EKFAC(Dtrain)
while convergence is not reached, iteration i do

sample a minibatch D from Dtrain
Do forward and backprop pass as needed to obtain h and δ
for all layer l do

if i % n = 0 then ▷ Amortize eigendecomposition
ComputeEigenBasis(D, l)

end if
ComputeScalings(D, l)
∇mini ← E(x,y)∈D

[
∇(l)

θ (x,y)
]

UpdateParameters(∇mini, l)
end for

end while
end procedure

procedure ComputeEigenBasis(D, l)
U

(l)
A ,S

(l)
A ← eigendecomposition

(
ED

[
h(l)h(l)⊤

])
U

(l)
B , S

(l)
B ← eigendecomposition

(
ED

[
δ(l)δ(l)⊤

])
end procedure

procedure ComputeScalings(D, l)

s∗(l) ← ED

[((
U

(l)
A ⊗ U

(l)
B

)⊤
∇(l)

θ

)2
]

▷ Project gradient in eigenbasis1

end procedure

procedure UpdateParameters(∇mini, l)
∇̃ ←

(
U

(l)
A ⊗ U

(l)
B

)⊤
∇mini ▷ Project gradients in eigenbasis1

∇̃ ← ∇̃/
(
s∗(l) + ϵ

)
▷ Element-wise scaling

∇precond ←
(
U

(l)
A ⊗ U

(l)
B

)
∇̃ ▷ Project back in parameter basis1

θ(l) ← θ(l) − η∇precond ▷ Update parameters
end procedure

them with KFAC and other baselines, primarily SGD with momentum, with and without
batch-normalization (BN). For all our experiments KFAC and EKFAC approximate the
empirical L2 metric G̃w (section 2.4). This research focuses on improving optimization
techniques, so except when specified otherwise, we performed model and hyperparameter
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selection based on the performance of the optimization objective, i.e. on the empirical loss
computed on the training set.

4.4.1. Deep auto-encoder

We consider the task of minimizing the reconstruction error of an 8-layer auto-encoder on
the MNIST dataset, a standard task used to benchmark optimization algorithms applied to
neural networks (Hinton & Salakhutdinov, 2006; Martens & Grosse, 2015; Desjardins et al.,
2015). The model consists of an encoder composed of 4 fully-connected sigmoid layers, with a
number of hidden units per layer of respectively 1000, 500, 250, 30, and a symmetric decoder
(with untied weights).

We compare EKFAC, computing the second moment statistics through its mini-batch,
and EKFAC-ra, its running average variant, with different baselines (KFAC, SGD with
momentum and BN, ADAM with BN). For each algorithm, best hyperparameters were
selected using a mix of grid and random search based on training error. Grid values for
hyperparameters are: learning rate η and damping ϵ in {10−1, 10−2, 10−3, 10−4}, mini-batch
size in {200, 500}. In addition we explored 20 values for (η,ϵ) by random search around
each grid points. We found that extra care must be taken when choosing the values of the
learning rate and damping parameter ϵ in order to get good performances, as often observed
when working with algorithms that leverage curvature information (see Figure 3 (d)). The
learning rate and the damping parameters are kept constant during training.

Figure 3 (a) reports the training loss throughout training and shows that EKFAC and
EKFAC-ra both minimize faster the training loss per epoch than KFAC and the other base-
lines. In addition, Figure 3 (b) shows that the efficient tracking of diagonal scaling vector
s∗ in EKFAC-ra, despite its slightly increased computational burden per update, allows to
achieve faster training in wall-clock time. Finally, on this task, EKFAC and EKFAC-ra
achieve better optimization while also maintaining a very good generalization performance
(Figure 3 (c)).

Frequency of amortization. Next we investigate how the frequency of the inverse/eigen-
decomposition recomputation affects optimization. In Figure 4, we compare KFAC/EKFAC
with different reparametrization frequencies to a strong KFAC baseline where we reestimate
and compute the inverse at each update. This baseline outperforms the amortized version (as
a function of number of epochs), and is likely to leverage a better approximation of G as it
recomputes the approximated eigenbasis at each update. However it comes at a high compu-
tational cost, as seen in Figure 4 (b). Amortizing the eigendecomposition allows to strongly
decrease the computational cost while slightly degrading the optimization performances. As
can be seen in Figure 4 (a), amortized EKFAC preserves better the optimization performance
than amortized KFAC. EKFAC re-estimates at each update, the diagonal second moments

76



0 50 100 150 200
 Epoch

100

101
Tr

ai
n 

Lo
ss

SGD Momentum
Adam
EKFAC_ra  freq: 50
KFAC  freq: 50
EKFAC freq: 50

(a) Training loss

0 500 1000 1500 2000
 Compute Time (in second)

100

101

Tr
ai

n 
Lo

ss

SGD Momentum
Adam
EKFAC_ra   freq (reprod): 50
KFAC  freq (reprod): 50
EKFAC freq: 50

(b) Wall-Clock Time

0 50 100 150 200
 Epoch

101

Va
lid

 L
os

s

SGD Momentum
Adam
KFAC freq: 50
EKFAC freq: 50
EKFAC_ra freq: 50

(c) Validation Loss

10 3 10 2 10 1

learning rate

10 4

10 3

10 2

10 1

100

da
m

pi
ng

3

4

5

6

lo
ss

(d) Hyperparameters

Figure 3. MNIST Deep Auto-Encoder task. Models are selected based on the best loss achieved
during training. SGD and Adam are with batch-norm. A "freq" of 50 means eigendecomposition or
inverse is recomputed every 50 updates. (a) Training loss vs epochs. Both EKFAC and EKFAC-ra
show an optimization benefit compared to amortized-KFAC and the other baselines. (b) Training
loss vs wall-clock time. Optimization benefits transfer to faster training for EKFAC-ra. (c) Vali-
dation performance. KFAC and EKFAC achieve a similar validation performance. (d) Sensitivity
to hyperparameters values. Color corresponds to final loss reached after 20 epochs for batch size
200.

s∗ in the KFE basis, which correspond to the eigenvalues of the EKFAC approximation of
G. Thus it should better track the true curvature of the function space. To verify this,
we investigate how the eigenspectrum of the true empirical Fisher G changes compared to
the eigenspectrum of its approximations as GKFAC (or GEKFAC). In Figure 4 (c), we track
their eigenspectra and report the ℓ2 distance between them during training. We compute
the KFE once at the beginning and then keep it fixed during training. We focus on the 4th

layer of the auto-encoder: its small size allows to estimate the corresponding G and compute
its eigenspectrum at a reasonable cost. We see that the spectrum of GKFAC quickly diverges
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Figure 4. Impact of frequency of inverse/eigendecomposition recomputation for KFAC/EKFAC.
A "freq" of 50 indicates a recomputation every 50 updates. (a)(b) Training loss v.s. epochs
and wall-clock time. We see that EKFAC preserves better its optimization performances when
the eigendecomposition is performed less frequently. (c). Evolution of ℓ2 distance between the
eigenspectrum of empirical Fisher G and eigenspectra of approximations GKFAC and GEKFAC. We
see that the spectrum of GKFAC quickly diverges from the spectrum of G, whereas the EKFAC
variants, thanks to their frequent diagonal reestimation, manage to much better track G.
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Figure 5. VGG11 on CIFAR-10. "freq" corresponds to the eigendecomposition (inverse) fre-
quency. In (a) and (b), we report the performance of the hyper-parameters reaching the low-
est training loss for each epoch (to highlight which optimizers perform best given a fixed epoch
budget). In (c) models are selected according to the best overall validation error. When the in-
verse/eigendecomposition is amortized on 500 iterations, EKFAC-ra shows an optimization benefit
while maintaining its generalization capability.

from the spectrum of G, whereas the cheap frequent reestimation of the diagonal scaling
for GEKFAC and GEKFAC−ra allows their spectrum to stay much closer to that of G. This is
consistent with the evolution of approximation error shown earlier in Figure 2 on the small
MNIST classifier.

4.4.2. CIFAR-10

In this section, we evaluate our proposed algorithm on the CIFAR-10 dataset using a
VGG11 convolutional neural network (Simonyan & Zisserman, 2015) and a Resnet34 (He
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et al., 2016a). To implement KFAC/EKFAC in a convolutional neural network, we rely on
the SUA approximation (Grosse & Martens, 2016) which has been shown to be competitive
in practice (Laurent et al., 2018). We highlight that we do not use BN in our model when
they are trained using KFAC/EKFAC, whereas training with Adam or SGD with momentum
requires including BN in order to be competitive. As in the previous experiments, a grid
search is performed to select the hyperparameters. Around each grid point, learning rate
and damping values are further explored through random search.

In Figure 5, we compare EKFAC/EKFAC-ra to KFAC and SGD Momentum with or
without BN when training a VGG-11 network. We use a batch size of 500 for the KFAC
based approaches and 200 for the SGD baselines. Figure 5 (a) show that EKFAC yields
better optimization than the SGD baselines and KFAC in training loss per epoch when the
computation of the KFE is amortized. Figure 5 (c) also shows that models trained with EK-
FAC maintain good generalization. EKFAC-ra shows some wall-clock time improvements
over the baselines in that setting ( Figure 5 (b)). However, we observe that using KFAC
with a batch size of 200 can catch-up with EKFAC (but not EKFAC-ra) in wall-clock time
despite being outperformed in term of optimization per iteration. VGG11 is a relatively
small network by modern standard and the KFAC (with SUA approximation) remains com-
putationally bearable in this model. We hypothesize that using smaller batches, KFAC can
be updated often enough per epoch to have a reasonable estimation error while not paying
too high a computational price.

In Figure 6, we report similar results when training a Resnet34 He et al. (2016b). We
compare EKFAC-ra with KFAC, and SGD with momentum and BN. To be able to train
the Resnet34 without BN, we need to rely on a careful initialization scheme (detailed in
Appendix A.3) in order to ensure good signal propagation during the forward and backward
passes. EKFAC-ra outperforms both KFAC (when amortized) and SGD with momentum
and BN in term of optimization per epochs, and compute time. This gain appears robust
across different batch sizes.

4.5. Discussion
In this work, we introduced the Eigenvalue-corrected Kronecker factorization (EKFAC),

an approximate factorization of the Fisher Information Matrix that is computationally man-
ageable while still being accurate. We formally proved that EKFAC yields a more accurate
approximation than its closest parent and competitor KFAC, in the sense of the Frobenius
norm. Of more practical importance, we showed that our algorithm allows to cheaply per-
form partial updates of the curvature estimate, by maintaining an up-to-date estimate of its
eigenvalues while keeping the estimate of its eigenbasis fixed. This partial updating proves
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Figure 6. Training a Resnet Network with 34 layers on CIFAR-10. "freq" corresponds to eigende-
composition (inverse) frequency. In (a) and (b), we report the performance of the hyper-parameters
reaching the lowest training loss for each epoch (to highlight which optimizers perform best given
a fixed epoch budget). In (c) we select model according to the best overall validation error. When
the inverse/eigen decomposition is amortized on 500 iterations, EKFAC-ra shows optimization and
computational time benefits while maintaining a good generalization capability.

competitive when applied to optimizing deep networks, both with respect to the number of
iterations and wall-clock time.

This concludes our chapter on EKFAC and the part of this thesis dedicated to opti-
mization. In the next chapters, we will be interested in getting theoretical insights into the
generalization mechanisms that make deep networks generalize well.
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Chapter 5

Lazy vs hasty: linearization in deep networks
impacts learning schedule based on example

difficulty

Prologue
In this chapter, we compare the training dynamics of deep networks, to those of linear

models using the initial neural tangent kernel (NTK). Instead of using signal analysis tools
to characterize the differences between learned predictors, we use groups of examples sorted
by 3 different notions of learning difficulty and show that the difference between linear and
non-linear regimes can be appreciated in how they prioritize easy and difficult examples.

Article Details. Lazy vs hasty: linearization in deep networks impacts learning schedule
based on example difficulty. Thomas George, Guillaume Lajoie, Aristide Baratin. The paper
has been published in TMLR 2022 (George et al., 2022).

Context. A main challenge in understanding the generalization properties of deep networks
is the difficulty in characterizing the solution at the end of training. Indeed, the optimization
problem is non-convex with possibly infinitely many local optima, unlike e.g. ridge regression
where there is an analytical solution. Our approach is instead to try and model the training
dynamics, as accurately as possible, with tools that are amenable to analytical treatment.

The Neural Tangent Kernel (NTK) paper (Jacot et al., 2018) has popularized the idea
of importing theoretical concepts from the richer literature on kernelized linear models to
the study of deep networks, for which there is currently no comprehensive theory of general-
ization. In particular, it has inspired a series of works on overparameterized (with possibly
infinitely many parameters) linear models (Bartlett et al., 2021; Mei & Montanari, 2022;
Loureiro et al., 2021) . While elegant, the infinite width limiting regime arguably does not
capture the phenomena at play in the standard finite regime. We were interested in studying
how the true learning regime departs from its idealized linearly trained counterpart.



A second challenge for an analytical model is to take into account the structure of the
data. Idealized theoretical settings often resort to crude simplifications (e.g. data is sampled
from a Gaussian distribution, or it lies on a sphere). By contrast, we directly work with
examples coming from the true dataset. We group examples by ’difficulty’ using C-scores
(Jiang et al., 2021), in the context of spurious examples (Sagawa et al., 2020b), or in the
presence of noisy labels. Our work takes part in a series of recent works that analyze machine
learning models by studying which examples are easy or difficult to learn (Koh & Liang, 2017;
Toneva et al., 2019; Pruthi et al., 2020; Baldock et al., 2021).

This paper has been published after our last paper in Chapter 6. We chose to include it
first since it provides a motivation for the next chapter, and conversely the next chapter offers
a mechanistic explanation of how learning in the true regime magnifies the sequentialization
between easy and difficult examples.

Developments. As of this writing, this is a very recent publication (accepted for publication
in December 2022). It has not yet inspired any follow-up work.

Personal Contribution. I had been experimenting with different frameworks to model
the training dynamics of deep networks using tractable approximations. Aristide proposed
to directly look at examples. Guillaume came up with the ideas of normalizing progress
adapted to our experiments. I implemented all experiments and generated all plots. I and
Aristide did most of the writing. Aristide contributed to the analytical model. Guillaume
and Aristide supervised the project, and significantly improved the manuscript.

5.1. Introduction
Understanding the performance of deep learning algorithms has been the subject of in-

tense research efforts in the past few years, driven in part by observed phenomena that
seem to defy conventional statistical wisdom (Neyshabur et al., 2014; Zhang et al., 2017a;
Belkin et al., 2019). Notably, many such phenomena have been analyzed rigorously in sim-
pler contexts of high dimensional linear or random feature models (e.g., Hastie et al., 2022;
Bartlett et al., 2021), which shed a new light on the crucial role of overparametrization in the
performance of such systems. These results also apply to the so-called lazy training regime
(Chizat et al., 2019), in which a deep network can be well approximated by its linearization
at initialization, characterized by the neural tangent kernel (NTK) (Jacot et al., 2018; Du
et al., 2019b; Allen-Zhu et al., 2019). In this regime, deep networks inherit the inductive
bias and generalization properties of kernelized linear models.

It is also clear, however, that deep models cannot be understood solely through their
kernel approximation. Trained outside the lazy regime (e.g., Woodworth et al., 2020), they
are able to learn adaptive representations, with a time-varying tangent kernel (Fort et al.,
2020) that specializes to the task during training (Kopitkov & Indelman, 2020; Baratin et al.,
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2021; Paccolat et al., 2021; Ortiz-Jiménez et al., 2021). Several results showed examples
where their inductive bias cannot be characterized in terms of a kernel norm (Savarese et al.,
2019; Williams et al., 2019), or where they provably outperform any linear method (Malach
et al., 2021). Yet, the specific mechanisms by which the two regimes differ, which could
explain the performance gaps often observed in practice (Chizat et al., 2019; Geiger et al.,
2020), are only partially understood.

Our work contributes new qualitative insights into this problem, by investigating the
comparative effect of the lazy and feature learning regimes on the training dy-
namics of various groups of examples of increasing difficulty. We do so by means
of a control parameter that modulates linearity of the parametrization and smoothly inter-
polates the two training regimes (Chizat et al., 2019; Woodworth et al., 2020). We provide
empirical evidence and theoretical insights suggesting that the feature learning regime
puts higher weight on easy examples at the beginning of training, which results in an
increased learning speed compared to more difficult examples. This can be understood as an
instance of the simplicity bias brought forward in recent work (Arpit et al., 2017; Rahaman
et al., 2019; Kalimeris et al., 2019), which we show here to be much more pronounced in the
feature learning regime. It also resonates with the old idea that generalization can benefit
from some curriculum learning strategy (Elman, 1993; Bengio et al., 2009).

Contributions.
• We introduce and test the hypothesis of qualitatively different example importance

between linear and non-linear regimes;
• Using adequately normalized plots, we present a unified picture using 4 different ways

to quantify example difficulty, where easy examples are prioritized in the non-linear
regime. We illustrate empirically this phenomenon across different ways to quantify
example difficulty, including c-score (Jiang et al., 2021), label noise, and spurious
correlation to some easy-to-learn set of features.
• We illustrate some of our insights in a simple quadratic model amenable to analytical

treatment.
The general setup of our experiments is introduced in Section 5.2. Section 5.3 is our

empirical study, which begins with an illustrative example on a toy dataset (Section 5.3.1),
followed by experiments on CIFAR 10 in two setups where example difficulty is quantified
using respectively c-scores and label noise (Section 5.3.2). We also examine standard setups
where easy examples are those with strong correlations between their labels and some spu-
rious features (Section 5.3.3). Section 5.4 illustrates our findings with a theoretical analysis
of a specific class of quadratic models, whose training dynamics is solvable in both regimes.
We conclude in Section 5.5.
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Related work. The neural tangent kernel was initially introduced in the context of infinitely
wide networks, for a specific parametrization that provably leads to the lazy regime (Jacot
et al., 2018). Such a regime allows to cast deep learning as a linear model using a fixed kernel,
enabling import of well-known results from linear models, such as guarantees of convergence
to a global optimum (?Du et al., 2019b; Allen-Zhu et al., 2019). On the other hand, it is also
clear that the kernel regime does not fully capture the behavior of deep models – including,
in fact, infinitely wide networks (Yang & Hu, 2021). For example, in the so-called mean
field limit, training two-layer networks by gradient descent learns adaptive representations
(Chizat & Bach, 2018; Mei et al., 2018) and it can be shown that the inductive bias cannot
be characterized in terms of a RKHS norm (Savarese et al., 2019; Williams et al., 2019).
Performance gaps between the two regimes are also often observed in practice (Chizat et al.,
2019; Arora et al., 2019; Geiger et al., 2020).

Subsequent work showed and analyzed how, for a fixed (finite-width) network, the scaling
of the model at initialization also controls the transition between the lazy regime, governed
by the empirical neural tangent kernel, and the standard feature learning regime (Chizat
et al., 2019; Woodworth et al., 2020; Agarwala et al., 2020). In line with this prior work,
in our experiments below we use a scaling parameter α > 0 that modulates linearity of the
parametrization and allows us to smoothly interpolates between the vanilla training (α = 1)
where features are learned and the lazy (α → ∞) regime where they are not. We compare
training runs with various values of α and empirically assess linearity with several metrics
described in Section 5.2 below.

Our results are in line with a group of work showing how deep networks learn patterns
and functions of increasing complexity during training (Arpit et al., 2017; Kalimeris et al.,
2019). An instance of this is the so-called spectral bias empirically observed in Rahaman
et al. (2019) where a sum of sinusoidal signals is incrementally learned from low frequencies
to high frequencies, or in Zhang et al. (2021) that use Fourier decomposition to analyze
the function learned by a deep convolutional network on a vision task. The spectral bias is
well understood in linear regression, where the gradient dynamics favours the large singular
directions of the feature matrix. For neural networks in the lazy regime, spectral analysis
of the neural tangent kernel have been investigated for architectures and data (e.g, uniform
data on the sphere) allowing for explicit computations (e.g., decomposition of the NTK in
terms of spherical harmonics) (Bietti & Mairal, 2019; Basri et al., 2019; Yang & Salman,
2019). This is a setup where the spectral bias can be rigorously analyzed, i.e., we can get
explicit information about the type of functions that are learned quickly and generalize well.
In this context, our work specifically focuses on comparing the lazy and the standard feature
learning regimes.

Our theoretical model in Section 5.4 reproduces some of the key technical ingredients
of known analytical results (Saxe et al., 2014; Gidel et al., 2019) on deep linear networks.
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These results show how, in the context of multiclass classification or matrix factorization, the
principal components of the input-output correlation matrix are learned sequentially from
the highest to the lowest mode. Note however that in the framework of these prior works,
the number of modes is bounded by the output dimension - which thus reduces to one in the
context of regression or binary classification. By contrast, our theoretical analysis applies to
the components of the vector of labels Y ∈ Rn in the eigenbasis of the kernel XX⊤ defined
by the input matrix X ∈ Rn×d. Thus, despite the technical similarities, our framework
approaches the old problem of the relative learning speed of different modes in factorized
models from a novel angle. In particular, it allows us to frame the notion of example difficulty
in this context.

Example difficulty is a loosely defined concept that has been the subject of intense re-
search recently. Ways to quantify example difficulty for a model/algorithm to learn individual
examples include e.g. self-influence (Koh & Liang, 2017), example forgetting (Toneva et al.,
2019), TracIn (Pruthi et al., 2020), C-scores (Jiang et al., 2021), or prediction depth (Baldock
et al., 2021). We believe that a comprehensive theory of generalization in deep learning will
require to understand how neural networks articulate learning and memorization to both fit
the head (easy examples) and the tail (difficult examples) of the data distribution (Hooker
et al., 2020; Feldman & Zhang, 2020; Sagawa et al., 2020a,b).

5.2. Setup
We consider neural networks fθ parametrized by θ ∈ Rp (i.e. weights and biases for all

layers), and trained by minimizing some task-dependent loss function ℓ(θ) := ∑n
i=1 ℓi(fθ(xi))

computed on a training dataset {x1, · · · ,xn}, using variants of gradient descent,

θ(t+1) = θ(t) − η∇θℓ(θ(t)), (5.2.1)

with some random initialization θ(0) and a chosen learning rate η > 0.

Linearization. A Taylor expansion and the chain rule give the corresponding updates f (t) :=
fθ(t) for any network output, at first order in the learning rate,

f (t+1)(x) ≃ f (t)(x)− η
n∑

i=1
K(t)(x, xi)∇ℓi, (5.2.2)

which depend on the time-varying tangent kernel K(t)(x, x′) := ∇θf (t)(x)⊤∇θf (t)(x′). The
lazy regime is one where this kernel remains nearly constant throughout training. Training
the network in this regime thus corresponds to training the linear predictor defined by

f̄θ(x) := fθ(0)(x) + (θ − θ(0))⊤∇θfθ(0)(x). (5.2.3)

Modulating linearity. In our experiments, following Chizat et al. (2019), we modulate the
level of "non-linearity" during training of a deep network with a scalar parameter α ≥ 1, by
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replacing our prediction fθ by

fα
θ (x) := fθ(0) (x) + α (fθ (x)− fθ(0) (x)) (5.2.4)

and by rescaling the learning rate as ηα = η/α2. In this setup, gradient descent steps in
parameter space are rescaled by 1/α while steps in function space (up to first order) are in
O(1) in α.1 α can also be viewed as controlling the level of feature adaptivity, where large
values of α result in linear training where features are not learned. We will also experiment
with α < 1 below, which enhances adaptivity compared the standard regime (α = 1). The
goal of this procedure is two-fold: (i) to be able to smoothly interpolate between the standard
regime at α = 1 and the linearized one, (ii) to work with models that are nearly linearized
yet practically trainable with gradient descent.

Linearity measures. In order to assess linearity of training runs for empirically chosen
values of the re-scaling factor α, we track three different metrics during training (fig 2 right):

• Sign similarity counts the proportion of ReLUs in all layers that have kept the
same activation status (0 or > 0) from initialization.
• Tangent kernel alignment measures the similarity between the Gram matrix
K

(t)
ij = K(t)(xi, xj) of the tangent kernel with its initial value K(0), using kernel

alignment (Cristianini et al., 2001)

KA(K(t),K(0)) = Tr[K(t)K(0)]
∥K(t)∥F∥K(0)∥F

(∥ · ∥F is the Froebenius norm) (5.2.5)

• Representation alignment measures the similarity of the last non-softmax layer
representation ϕ

(t)
R (x) with its initial value ϕ

(0)
R , in terms of the kernel alignment (eq.

5.2.5) of the corresponding Gram matrices (K(t)
R )ij = ϕ

(t)
R (xi)⊤ϕ

(t)
R (xj).

5.3. Empirical Study
5.3.1. A motivating example on a toy dataset

We first explore the effect of modulating the training regime for a binary classification
task on a toy dataset with 2d inputs, for which we can get a visual intuition. We use a
fully-connected network with 4 layers and ReLU activations. For 100 independent initial
parameter values, we generate 100 training examples uniformly on the square [−1,1]2 from
the yin-yang dataset (fig. 1.a). We perform 2 training runs for α = 1 and α = 100 using
(full-batch) gradient descent with learning rate 0.01.

Global training speed-up and normalization. After the very first few iterations, we
observe a speed-up in training progress of the non-linear regime (fig. 1.b). This is consistent
1Under some assumptions such as strong convexity of the loss, it was shown (Chizat et al., 2019, Thm 2.4)
that as α→∞, the gradient descent trajectory of fα

θ(t) gets uniformly close to that of the linearization f̄θ(t) .
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Figure 1. 100 randomly initialized runs of a 4 layers MLP trained on the yin-yang dataset (a)
using gradient descent in both the non-linear (α = 1) and linearized (α = 100) setting. The
training losses (b) show a speed-up in the non-linear regime: in order to compare both regimes at
equal progress, we normalize by comparing models extracted at equal training loss thresholds (c),
(d) and (e). We visualize the differences ∆loss (xtest) = lossfnon-linear (xtest)− lossflinear (xtest) for
test points paving the 2d square [−1,1]2 using a color scale. We observe that these differences are
not uniformly spread across examples: instead they suggest a comparative bias of the non-linear
regime towards correctly classifying easy examples (large areas of the same class), whereas difficult
examples (e.g. the small disks) are boosted in the linear regime.

with previously reported numerical experiments on the lazy training regime (Chizat et al.,
2019, section 3). This raises the question of whether this acceleration comes from a global
scaling in all directions, or if it prioritizes certain particular groups of examples. We address
this question by comparing the training dynamics at equal progress: we counteract the
difference in training speed by normalizing by the mean training loss, and we compare the
linear and non-linear regimes at common thresholds ((c), (d) and (e) horizontal lines in fig.
1.b).

Comparing linear and non-linear regimes. At every threshold value, we compute the
predictions on test examples uniformly paving the 2d square. We compare both regimes on
individual test examples by plotting (fig. 1.c, 1.d, 1.e) the differences in loss values,

∆loss (xtest) = lossfnon-linear (xtest)− lossflinear (xtest) (5.3.1)

Red (resp. blue) areas indicate a lower test loss for the linearized (resp. non-linear) model.
Remarkably, the resulting picture is not uniform: these plots suggest that compared to the
linear regime, the non-linear training dynamics speeds up for specific groups of examples
(the large top-right and bottom-left areas) at the expense of examples in more intricate
areas (both the disks and the areas between the disks and the horizontal boundary).

5.3.2. Hastening easy examples

We now experiment with deeper convolutional networks on CIFAR10, in two setups where
the training examples are split into groups of varying difficulty. Additional experiments with
various other choices of hyperparameters and initialization seed are reported in Appendix
C.6.
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5.3.2.1. Example difficulty using C-scores. In this section we quantify example diffi-
culty using consistency scores (C-scores, Jiang et al., 2021). Informally, C-scores measure
how likely an example is to be well-classified by models trained on subsets of the dataset
that do not contain it. Intuitively, examples with a high C-score share strong regularities
with a large group of examples in the dataset. Formally, given a choice of model f , for each
(input, label) pair (x,y) in a dataset D, Jiang et al. (2021) defines its empirical consistency
profile as:

ĈD,n (x,y) = Êr

D
n∼D\{(x,y)} [P (f (x; D) = y)] , (5.3.2)

where Êr is the empirical average over r subsets D of size n uniformly sampled from D
excluding (x, y), and f(·, D) is the model trained on D. A scalar C-score is obtained by av-
eraging the consistency profile over various values of n = 1, · · · , |D|−1. For CIFAR10 we use
pre-computed scores available as https://github.com/pluskid/structural-regularity.

While training, we compute the loss separately on 10 subsets of the training set ranked
by increasing C-scores deciles (e.g. examples in the last subset are top-10% C-scores), for
both the training set and test set. We also train a linearized copy of this network (so as to
share the same initial conditions) with α = 100. The α = 1 run is trained for 200 epochs
(64 000 SGD iterations) whereas in order to converge the α = 100 run is trained for 1 000
epochs (320 000 SGD iterations). Similarly to fig. 1, we normalize training progress using
the mean training loss in order to compare regimes at equal progress. We check (fig. 2
top right) that the model with α = 100 indeed stays in the linear regime during the whole
training run, since all 3 linearity metrics that we report essentially remain equal to 1. By
contrast, in the non-linear regime (α = 1), a steady decrease of linearity metrics as training
progresses indicates a rotation of the NTK and the representation kernel, as well as lower
sign similarity of the ReLUs.

The results are shown in fig. 2 (top left). As one might expect, examples with high
C-scores are learned faster during training than examples with low C-scores in both regimes.
Remarkably, this effect is amplified in the non-linear regime compared to the linear one, as
we can observe by comparing e.g. the top (resp. bottom) decile in light green (resp dark
blue). This illustrates a relative acceleration of the non-linear regime in the direction of easy
examples.

5.3.2.2. Example difficulty using label noise. In this section we use label noise to define
difficult examples. We train a ResNet18 on CIFAR10 where 15% of the training examples
are assigned a wrong (random) label. We compute the loss and accuracy independently on
the regular examples with their true label, and the noisy examples whose label is flipped. In
parallel, we train a copy of the initial model in the linearized regime with α = 100. Fig. 2
bottom right shows the 3 linearity metrics during training in both regimes.
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Figure 2. Starting from the same initial parameters, we train 2 ResNet18 models with α = 1
(standard training) and α = 100 (linearized training) on CIFAR10 using SGD with momentum.
(Top left) We compute the training loss separately on 10 subgroups of examples ranked by their
C-scores. Training progress is normalized by the mean training loss on the x-axis. Unsurprisingly,
in both regimes examples with high C-scores are learned faster. Remarkably, this ranking is more
pronounced in the non-linear regime as can be observed by comparing dashed and solid lines of the
same color. (Bottom left) We randomly flip the class of 15% of the training examples. At equal
progress (measured by equal clean examples loss), the non-linear regime prioritizes learning clean
examples and nearly ignores noisy examples compared to the linear regime since the solid curve
remains higher for the non-linear regime. Concomitantly, the non-linear test loss reaches a lower
value. (Right) On the same training run, as a sanity check we observe that the α = 100 training
run remains in the linear regime throughout since all metrics stay close to 1, whereas in the α = 1
run, the NTK and representation kernel rotate, and a large part of ReLU signs are flipped. These
experiments are completed in Appendix C.6 with accuracy plots for the same experiments, and
with other experiments with varying initial model parameters and mini-batch order.

The results are shown in fig. 2 (bottom left). In both regimes, the training process begins
with a phase where only examples with true labels are learned, causing the loss on examples
with wrong labels to increase. A second phase starts (in this run) at 1.25 clean examples loss
for the non-linear regime and 1.5 clean loss for the linear regime, where random labels are
getting memorized. We see that the first phase takes a larger part of the training run in the
non-linear regime than in the linear regime. We interpret this as the fact that the non-linear
regime prioritizes learning easy examples. As a consequence, the majority of the training
process is dedicated to learning the clean examples in the non-linear regime, whereas in the
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Figure 3. We visualize the trajectories of training runs on 2 spurious correlations setups, by
computing the accuracy on 2 separate subsets: one with examples that contain the spurious feature
(with spurious), the other one without spurious correlations (w/o spurious). On Celeb A (top
row), the attribute ’blond’ is spuriously correlated with the gender ’woman’. In the first phase of
training we observe that (left) the test accuracy is essentially higher for the linear run, which can
be further explained by observing that (middle) the training accuracy for w/o spurious examples
increases faster in the linear regime than in non-linear regimes at equal with spurious training
accuracy. (right) A similar trend holds for test examples. In this first part the linear regime is
less sensitive to the spurious correlation (easy examples) thus gets better robustness. (bottom
row) On Waterbirds, the background (e.g. a lake) is spuriously correlated with the label (e.g. a
water bird). (left) We observe the same hierarchy between the linear run and other runs. In the
first training phase, the linear regime is less prone to learning the spurious correlation: the w/o
spurious accuracy stays higher while the with spurious examples are learned ((middle) and
(right)). These experiments are completed in fig. 7 in Appendix C.6 with varying initial model
parameters and mini-batch order.

linear regime both the clean and the noisy labels are learned simultaneously passed the 1.5
clean loss mark. Concomitantly, comparing the sweet spot (best test loss) of the two regimes
indicates a higher robustness to label noise thus a clear advantage for generalization in the
non-linear regime.
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5.3.3. Spurious correlations

We now examine setups where easy examples are those with strong correlations between
their labels and some spurious feature (Sagawa et al., 2020b). We experiment with CelebA
(Liu et al., 2015) and Waterbirds (Wah et al., 2011) datasets.

CelebA. (Liu et al., 2015) is a collection of photographs of celebrities’ faces, each annotated
with its attributes, such as hair color or gender. Similarly to Sagawa et al. (2020b), our
task is to classify pictures based on whether the person is blond or not. In this dataset,
the attribute "the person is a woman" is spuriously correlated with the attribute "the person
is blond", since the attribute "blond" is over-represented among women (24% are blond)
compared to men (2% are blond).

We use 20 000 examples of CelebA to train a ResNet18 classifier on the task of predicting
whether a person is blond or not, using SGD with learning rate 0.01, momentum 0.9 and
batch size 100. We also extract a balanced dataset with 180 (i.e. the total number of blond
men in the test set) examples in each of 4 categories: blond man, blond woman, non-blond
man and non-blond woman. While training progresses, we measure the loss and accuracy
on the subgroups man and woman. Starting from the same initial conditions, we train 3
different classifiers with α ∈ {.5, 1, 100}.

Waterbirds. (Wah et al., 2011) is a smaller dataset of pictures of birds. We reproduce
the experiments of Sagawa et al. (2020a) where the task is to distinguish land birds and
water birds. In this dataset, the background is spuriously correlated with the type of bird:
water birds are typically photographed on a background such as a lake, and similarly there
is generally no water in the background of land birds. There are exceptions: a small part of
the dataset consists of land birds on a water background and vice versa (e.g. a duck walking
in the grass).

We use 4 795 training examples of the Waterbirds dataset. Since the dataset is smaller,
we start from a pre-trained ResNet18 classifier from default PyTorch models (pre-trained
on ImageNet). We replace the last layer with a freshly initialized binary classification layer,
and we set batch norm layers to evaluation mode2 We train using SGD with learning rate
0.001, momentum 0.9 and minibatch size 100.

From the training set, we extract a balanced dataset with 180 examples in each of 4
groups: land birds on land background, land birds on water background, water bird on
land background, and water bird on land background, which we group in two sets: with
spurious when the type of bird and the background agree, and w/o spurious otherwise.

2In order not to interfere with α scaling (see section 5.2), and since we consider that batch norm is a whole
different theoretical challenge by itself, we chose to turn it off, and instead keep the mean and variance
buffers to their pre-trained value. See appendix C.4 for further discussion of this point.
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While training, we measure the accuracy separately on these 2 sets. We train 3 different
classifiers with α ∈ {.5,1,100}.

Looking at fig. 3 left, for both the Waterbirds and the CelebA experiments we identify
two phases: in the first phase the test accuracy is higher for the linear α = 100 run than for
other runs. In the second phase all 3 runs seem to converge, with a slight advantage for non-
linear runs in Waterbirds. Taking a closer look at the first phase in fig. 3 middle and right,
we understand this difference in test accuracy in light of spurious and non-spurious features:
in the non-linear regime, the training dynamics learns the majority examples faster, at the
cost of being more prone to spurious correlations. This can be seen both on the balanced
training set and the balanced test set.

5.4. Theoretical Insights
The goal here is to illustrate some of our insights in a simple setup amenable to analytical

treatment.

5.4.1. A simple quadratic model

We consider a standard linear regression analysis: given n input vectors xi ∈ Rd with
their corresponding labels yi ∈ R, 1 ≤ i ≤ n, the goal is to fit a linear function fθ(x) to
the data by minimizing the least-squares loss ℓ(θ) := 1

2
∑

i(fθ(xi)− yi)2. We will focus on a
specific quadratic parametrization, which can be viewed as a subclass of two-layer networks
with linear activations.

Notation. We denote by X ∈ Rn×d the matrix of inputs and by y ∈ Rn the vector of labels.
We consider the singular value decomposition (SVD),

X = UMV ⊤ :=
rX∑

λ=1

√
µλuλv

⊤
λ (5.4.1)

where U ∈ Rn×n,V ∈ Rd×d are orthogonal and M is rectangular diagonal. rX denotes
the rank of X, µ1 ≥ · · · ≥ µrX

> 0 are the non zero (squared) singular values; we also
set µλ = 0 for rX < λ ≤ max(n, d). Left and right singular vectors extend to orthonormal
bases (u1, · · · ,un) and (v1, · · · ,vd) of Rn and Rd, respectively. In what follows we assume,
without loss of generality3, that the vector of labels has positive components in the basis uλ,
i.e., yλ := u⊤

λ y ≥ 0 for λ = 1, · · ·n.

Parametrization. We consider the following class of functions

fθ(x) = θ⊤x, θ := 1
2

d∑
λ=1

w2
λ vλ (5.4.2)

3One can use the reflection invariance √µλuλv
⊤
λ = √µλ(−uλ)(−vλ)⊤ of the SVD to flip the sign of yλ.

92



In this setting, the least-squares loss is minimized by gradient descent over the vector pa-
rameter w = [w1, · · ·wd]⊤. Given an initialization w0, we want to compare the solution
of the vanilla gradient (non linear) dynamics with the solution of the lazy regime, which
corresponds to training the linearized function (5.2.3), given in our setting by f̄θ̄(x) = θ̄⊤x
where θ̄ = ∑d

λ=1 wλw0
λ vλ.

5.4.2. Gradient dynamics

For simplicity, we analyze the continuous-time counterpart of gradient descent,

w(0) = w0, ẇ(t) = −∇wℓ(θ(t)) (5.4.3)

where the dot denotes the time-derivative. Making the gradients explicit and differentiating
(5.4.2) yield

θ̇(t) = −Σ(t)(θ(t)− θ∗), Σ(t) = V Diag(µ1w
2
1(t), · · · , µdw2

d(t))V ⊤ (5.4.4)

where θ∗ is the solution of the linear dynamics.4 Note how Σ(t) is obtained from the input
correlation matrix X⊤X by rescaling each eigenvalue µλ by the time-varying factor w2

λ. By
contrast, the lazy regime is described by the equation obtained from (5.4.4) by replacing
Σ(t) the constant matrix Σ(0).

In the proposition below (proved in Appendix C.1), we consider the system (5.4.3, 5.4.4)
initialized as θ0 := 1

2
∑d

λ=1(w0
λ )2 vλ where we assume that w0

λ ̸= 0 for all λ. We denote by
ỹλ the components of the input-label correlation vector X⊤y ∈ Rd in the basis vλ: we have
ỹλ = √µλyλ for 1 ≤ λ ≤ rX and 0 when rX < λ ≤ d.
Proposition 5.4.1. The solution of (5.4.3, 5.4.4) is given by,

θ(t) =
d∑

λ=1
θλ(t)vλ, θλ(t) =


θ0
λ θ∗

λ

θ0
λ − e−2ỹλt(θ0

λ − θ∗
λ ) if θ∗

λ ̸= 0
θ0
λ

1 + 2µλθ0
λ t

if θ∗
λ = 0

(5.4.5)

By contrast, the solution in the linearized regime where Σ(t) ≈ Σ(0) is,

θλ(t) = θ∗
λ + e−µλθ0

λ t(θ0
λ − θ∗

λ ) (5.4.6)

5.4.3. Discussion

While the gradient dynamics (5.4.5,5.4.6) converge to the same solution θ∗, we see that
the convergence rates of the various modes differ in the two regimes. To quantify this, for
each dynamical mode 1 ≤ λ ≤ rX such that |θ∗

λ | ̸= 0, let tλ(ϵ), tlin
λ(ϵ) be the times required

4Explicitly, θ∗ = Σ+X⊤y+P⊥(θ0) where Σ+ is the pseudoinverse of the input correlation matrix Σ = X⊤X

and P⊥ projects onto the null space of X. It decomposes as θ∗ =
∑d

λ=1 θ∗
λvλ in the basis vλ, where

θ∗
λ = yλ/

√
µλ for 1 ≤ λ ≤ rX and θ∗

λ = θ0
λ for rX < λ ≤ d.
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for θλ to be ϵ-close to convergence, i.e |θλ − θ∗
λ| = ϵ, in the two regimes. Substituting into

(5.4.5) and (5.4.6) we find that, close to convergence ϵ ≪ θ∗
λ and for a small initialization,

θ0
λ ≪ θ∗

λ,
tλ(ϵ) = 1

ỹλ

log θ∗
λ

ϵθ0
λ

, tlin
λ(ϵ) = 1

µλθ0
λ

log θ∗
λ

ϵ
(5.4.7)

up to terms in O(ϵ/θ∗
λ , θ0

λ /θ∗
λ ). Two remarks are in order:

Linearization impacts learning schedule. Specifically, while the learning speed of each
mode depends on the components of the label vector in the non linear regime, through
ỹλ = √µλyλ, it does not in the linearized one. Thus, the ratio of ϵ-convergence times for two
given modes λ, λ′ is tλ/tλ′ = ỹλ/ỹλ′ in the non-linear case and tlin

λ/tlin
λ = µλ′θ0

λ′/µλθ0
λ in the

linearized case, up to logarithmic factors.

Sequentialization of learning. Non-linearity, together with a vanishingly small initializa-
tion, induces a sequentialization of learning for the various modes (see also Gidel et al., 2019,
Thm 2). To see this, pick a mode λ and consider, for any other mode λ′, the value θλ′(tλ)
at the time tλ := tλ(ϵ) where λ reaches ϵ-convergence. Let us also write θ0

λ = σθ̃0
λ where σ is

small and θ̃0
λ = O(1) as σ → 0. Then elementary manipulations show the following:

θλ′(tλ) = θ∗
λ′ θ̃0

λ′

θ̃0
λ′ +

[
ϵθ̃0

λ′/θ∗
λ′

]2 ỹλ′
ỹλ σ

2
ỹλ′
ỹλ

−1
=σ→0

θ∗
λ′ ỹλ′ > ỹλ

0 ỹλ′ < ỹλ

(5.4.8)

In words, for fixed ϵ > 0 and in the limit of small initialization, the mode λ gets ϵ-close
to convergence before any of the subdominant mode deviates from their (vanishing) initial
value: the modes are learned sequentially.

5.4.4. Mode vs example difficulty

We close this section by illustrating the link between mode and example difficulty on three
concrete examples of structure for the training data {xi, yi}n

i=1. In what follows, we consider
the overparametrized setting where d ≥ n. We denote by e1, · · · ed the canonical basis of Rd.

For each of the examples below, we consider an initialization w0 =
√

σ[1 · · · 1]⊤ with
small σ > 0 and the corresponding solutions in Prop. 5.4.1 for both regimes.

Example 1. We begin with a rather trivial setup where each mode corresponds to a training
example. It will illustrate how non-linearity can reverse the learning order of the examples.
Given a sequence of strictly positive numbers µ1 ≥ · · ·µn > 0, we consider the training data,

xi = √µiei, yi = µn−i+1/
√

µi, 1 ≤ i ≤ n (5.4.9)

In the linearized regime, fθ(t)(xi) converges to yi at the linear rate σµi; the model learns
faster the examples with higher µi, hence with lower index i. In the non linear regime, the
examples are learned sequentially according to the value ỹi = √µiyi = µn−i+1, hence from
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Figure 4. (left) Different input/label correlation (example 1): examples are learned in a flipped
order in the two regimes. (middle) Label noise (example 2): the non-linear dynamics priori-
tizes learning the clean labels (right) Spurious correlations (example 3): the non-linear dynamics
prioritizes learning the spuriously correlated feature. These analytical curves are completed with
numerical experiments on standard (dense) 2-layer MLP in figure 9 in appendix C.7, which shows
a similar qualitative behaviour.

high to low index i. Thus in this setting, linearization flips the learning order of the training
examples (see fig. 4 left).

In examples 2 and 3 below we aim at modelling situations where the labels depend on
low-dimensional (in this case, one dimensional) projections on the inputs (e.g. an image
classification problem where the labels mainly depend on the low frequencies of the im-
age). These two examples mirror the two sets of experiments in Sections 5.3.2.2 and 5.3.3,
respectively.

Example 2. We consider a simple classification setup on linearly separable data with label
noise. Here we assume d > n. Conditioned on a set of binary labels yi = ±1, the inputs are
given by

xi = κiyie1 + ηei+1 1 ≤ i ≤ n (5.4.10)

where κi = ±1 is some ‘label flip’ variable and η > 0. We assume we have q ‘noisy’ examples
with flipped labels, i.e. κi = −1, where 1 ≤ q < ⌈n/2⌉.

The SVD of the feature matrix X ∈ Rn×d defined by (5.4.10) can be made explicit. In
particular, the top left singular vector is u1 = ȳ/

√
n, where ȳ ∈ Rn denotes the vector of

noisy labels ȳi := κiyi. This singles out a dominant mode y1 := (u⊤
1 y)u1 of the label vector

y that is learned first by the non-linear dynamics. Explicitly,

y1 = (1− 2q

n
)ȳ (5.4.11)

For a small noise ratio q/n ≪ 1, this yields y1i ≈ yi for clean examples and −yi for noisy
ones: fitting the dominant mode amounts to learning the clean examples – while assigning
the wrong label to the noisy ones. This is illustrated in fig 4 (middle plot).

Example 3. We consider a simple spurious correlation setup (Sagawa et al., 2020b), obtained
by adding to (5.4.10) a ‘core’ feature that separates all training points. Here we assume
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d > n + 1. Conditioned on a set of binary labels yi = ±1, the inputs are given by

xi = κiyie1 + λyie2 + ηei+2, 1 ≤ i ≤ n (5.4.12)

for some binary variable κi = ±1, scaling factor λ ∈ (0, 1), and η > 0. Given 1 ≤ q < ⌈n/2⌉,
we assume we have a majority group of n− q training examples with κi = 1, whose label is
spuriously correlated with the spurious feature e2, and a minority group of q examples with
κi = −1.

The analysis is similar as in Example 2. For small noise ratio and scaling factor λ, the
non-linear dynamics enhances the bias towards fitting first the majority group of (‘easy’)
examples with spuriously correlated labels. This illustrates an increased sensitivity of the
non linear regime to the spurious feature – at least in the first part of training. This is shown
in fig 4 (right plot).

5.5. Conclusion
The recent emphasis on the lazy training regime, where deep networks behave as linear

models amenable to analytical treatment, begs the question of the specific mechanisms and
implicit biases which differentiates it from the full-fledged feature learning regime of the
algorithms used in practice. In this paper, we investigated the comparative effect of the
two regimes on subgroups of examples based on their difficulty. We provided experiments in
various setups suggesting that easy examples are given more weight in non-linear training
mode (deep learning) than in linear training, resulting in a comparatively higher learning
speed for these examples. We illustrated this phenomenon across various ways to quantify
examples difficulty, through C-scores, label noise, and correlations to some easy-to-learn
spurious features. We complemented these empirical observations with a theoretical analysis
of a quadratic model whose training dynamics is tractable in both regimes. We believe that
our findings makes a step towards a better understanding of the underlying mechanisms that
drive the good generalization properties observed in practice.

This concludes our comparison of the lazy and feature learning regimes. In the next
chapter, we formalize a dynamical mechanism of rotation and stretching of the NTK during
training. This mechanism sheds light on the ’how’ does the feature learning regime prioritize
certain groups of examples.
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Chapter 6

Implicit Regularization via Neural Feature
Alignment

Prologue
In this chapter, we study how the finite-width neural tangent kernel (NTK) varies during

training. We discover an implicit regularization mechanism given by an increased alignment
of the NTK to the target kernel as training progresses. We exploit this alignment by de-
scribing a Rademacher complexity bound based on a family of functions stemming from a
sequence of increasingly aligned kernels. We empirically show the relevance of this bound at
capturing the generalization gap of deep networks while we vary the number of parameters,
or the proportion of corrupted labels in the training set.

Article Details. Implicit Regularization via Neural Feature Alignment. Aristide Baratin∗,
Thomas George∗, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon
Lacoste-Julien. The paper has been published at AISTATS 2021 (Baratin et al., 2021).

∗ Co-first authors.

Context. The genesis of the project came from a previous paper about the spectral bias
of gradient descent on deep networks (Rahaman et al., 2019), where it is empirically shown
on synthetic data that Fourier modes are learned sequentially from low frequencies to high
frequencies. At the same time, the NTK paper (Jacot et al., 2018) popularized the idea
of importing ideas from kernel methods to deep learning theory. A natural idea was to
explore this spectral bias using modes of the NTK instead of Fourier modes, and we indeed
observed that the dominant modes are aligned (see Figure 2 in Appendix B). Concurrently,
other authors also analyzed linear regimes (Yang & Salman, 2019; Bietti & Mairal, 2019)
and identified generalization properties in synthetic data setups.

The actual training regime of deep networks is however not linear. Locally to each
iterate, it can nonetheless be linearized using the first order Taylor expansion of the function
with respect to the parameters. This defines tangent features that vary throughout the
course of training, and a local, time-varying NTK. We empirically analyzed this NTK as



training progresses, and report 2 main insights: i) the effective rank of the NTK diminishes,
concentrating on a few modes with large eigenvalues, and ii) the alignment between the
NTK and the target kernel increases. i) can be interpreted as a compression mechanism
that locally biases the training dynamics towards a few directions in function space. ii) is a
popular criterion for kernel learning (Cortes et al., 2012), since aligned kernels tend to have
better generalization properties (Cristianini et al., 2001).

We interpret this alignment as an implicit bias (Neyshabur et al., 2014) that effectively
reduces the capacity of families of trained neural networks. By considering the whole opti-
mization trajectory as a series of steps made using a sequence of increasingly aligned kernels,
we propose a Rademacher complexity measure for such families of functions.

These alignment and complexity measure are empirically evaluated in different settings,
including in the presence of label noise, or by training networks with varying number of
parameters. This sensitivity analyses show that the alignment mechanism is consistent
across setups, and that the complexity measure correlates with the generalization gap.

Developments. Concurrently to our work, following publication of the NTK paper of Jacot
et al. (2018), other teams studied the properties of the time varying tangent kernel. Fort
et al. (2020) empirically showed that the evolution of the NTK is very rapid in a first phase of
training, then it is mostly frozen. Learning a kernelized linear model using the NTK extracted
late in training (coined the ’after kernel’ in Long (2021)) gives better generalization than the
initial NTK. Atanasov et al. (2021) and Shan & Bordelon (2021) study the alignment effect
in deep linear networks.

Finally, in the paper presented in Chapter 5, we continue our exploration by looking more
closely at which examples are given more weight by the deep learning training regime. The
mechanism that is at play can be understood in the words of the current paper, by saying
that the NTK aligns preferably to the groups of easy examples that we have identified.

Personal Contribution. Aristide contributed the core idea of looking at the evolution of
the NTK during training, and the Rademacher complexity bound. I contributed to most of
the experiments, including some that did not end up appearing in the paper. César helped
with experiments. Devon, Guillaume, Pascal and Simon contributed to the project through
discussions and supervision.

6.1. Introduction
One important property of deep neural networks is their ability to generalize well on

real data. Surprisingly, this is even true with very high-capacity networks without explicit
regularization (Neyshabur et al., 2014; Zhang et al., 2017a; Hoffer et al., 2017). This seems
at odds with the usual understanding of the bias-variance trade-off (Geman et al., 1992; Neal
et al., 2019; Belkin et al., 2019): highly complex models are expected to overfit the training
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data and perform poorly on test data (Hastie et al., 2009). Solving this apparent paradox
requires understanding the various learning biases induced by the training procedure, which
can act as implicit regularizers (Neyshabur et al., 2014, 2017b).

In this paper, we help clarify one such implicit regularization mechanism, by examining
the evolution of the neural tangent features (Jacot et al., 2018) learned by the network along
the optimization paths. Our results can be understood from two complementary perspec-
tives: a geometric perspective – the (uncentered) covariance of the tangent features defines
a metric on the function class, akin to the Fisher information metric (e.g., Amari, 2016);
and a functional perspective – through the tangent kernel and its RKHS. In standard super-
vised classification settings, our main observation is a dynamical alignment of the tangent
features along a small number of task-relevant directions during training. We interpret this
phenomenon as a combined mechanism of feature selection and compression. The intuition
motivating this work is that such a mechanism allows large models to adapt their capacity
to the task, which in turn underpins their generalization abilities.

Specifically, our main contributions are as follows:
(1) Through experiments with various architectures on MNIST and CIFAR10, we give

empirical insights on how the tangent features and their kernel adapt to the task dur-
ing training (Section 6.3). We observe in particular a sharp increase of the anisotropy
of their spectrum early in training, as well as an increasing similarity with the class
labels, as measured by centered kernel alignment (Cortes et al., 2012).

(2) Drawing upon intuitions from linear models (Section 6.4.1), we argue that such a dy-
namical alignment acts as implicit regularizer. We motivate a new heuristic complex-
ity measure which captures this phenomenon, and empirically show better correlation
with generalization compared to various measures proposed in the recent literature
(Section 6.4).

6.2. Preliminaries
Let F be a class of functions (e.g a neural network) parametrized by w ∈ RP . We restrict

here to scalar functions fw : X → R to keep notation light.1

Tangent Features. We define the tangent features as the function gradients w.r.t
the parameters,

Φw(x) := ∇wfw(x) ∈ RP . (6.2.1)

The corresponding kernel kw(x, x̃) = ⟨Φw(x), Φw(x̃)⟩ is the tangent kernel (Jacot et al.,
2018). Intuitively, the tangent features govern how small changes in parameter affect the

1The extension to vector-valued functions, relevant for the multiclass classification setting, is presented in
Appendix B.1, along with more mathematical details.
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Figure 1. Evolution of eigenfunctions of the tangent kernel, ranked in nonincreasing order of
the eigenvalues (in columns), at various iterations during training (in rows), for the 2d Disk
dataset. After a number of iterations, we observe modes corresponding to the class structure (e.g.
boundary circle) in the top eigenfunctions. Combined with an increasing anistropy of the spectrum
(e.g λ20/λ1 = 1.5% at iteration 0, 0.2% at iteration 2000), this illustrates a stretch of the tangent
kernel, hence a (soft) compression of the model, along a small number of features that are highly
correlated with the classes.

function’s outputs,
δfw(x) = ⟨δw, Φw(x)⟩+ O(∥δw∥2). (6.2.2)

More formally, the (uncentered) covariance matrix gw = Ex∼ρ

[
Φw(x)Φw(x)⊤

]
w.r.t the input

distribution ρ acts as a metric tensor on F : assuming F ⊂ L2(ρ), this is the metric induced
on F by pullback of the L2 scalar product. It characterizes the geometry of the function
class F . Metric (as symmetric P × P matrices) and tangent kernels (as rank P integral
operators) share the same spectrum (see Prop B.1.1 in Appendix B.1.3).

Spectral Bias. The structure of the tangent features impacts the evolution of the
function during training. To formalize this, we introduce the covariance eigenvalue decom-
position gw =∑P

j=1 λwjvwjv
⊤
wj, which summarizes the predominant directions in parameter

space. Given n input samples (xi) and fw∈Rn the vector of outputs fw(xi), consider gra-
dient descent updates δwGD = −η∇wL for some cost function L := L(fw). The following
elementary result (see Appendix B.1.5) shows how the corresponding function updates in
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the linear approximation (6.2.2), δfGD(x) := ⟨δwGD, Φw(x)⟩, decompose in the eigenbasis2

of the tangent kernel:
uwj(x) = 1√

λwj

⟨vwj, Φw(x)⟩ (6.2.3)

Lemma 6.2.1 (Local Spectral Bias). The function updates decompose as δfGD(x) =∑P
j=1 δfjuwj(x) with

δfj = −ηλwj(u⊤
wj∇fwL), (6.2.4)

where uwj = [uwj(x1), · · ·uwj(xn)]⊤ ∈ Rn and ∇fw denotes the gradient w.r.t the sample
outputs.

This illustrates how, from the point of view of function space, the metric/tangent kernel
eigenvalues act as a mode-specific rescaling ηλwj of the learning rate.3 This is a local version
of a well-known bias for linear models trained by gradient descent (e.g in linear regression,
see Appendix B.1.5.2), which prioritizes learning functions within the top eigenspaces of the
kernel. Several recent works (Bietti & Mairal, 2019; Basri et al., 2019; Yang & Salman, 2019)
investigated such bias for neural networks, in linearized regimes where the tangent kernel
remains constant during training (Jacot et al., 2018; Du et al., 2019b; Allen-Zhu et al.,
2019). As a simple example, for a randomly initialized MLP on 1D uniform data, Fig. 2 in
Appendix B.1.5 shows an alignment of the tangent kernel eigenfunctions with Fourier modes
of increasing frequency, in line with prior empirical observations (Rahaman et al., 2019; Xu
et al., 2019) of a ‘spectral bias’ towards low-frequency functions.

Tangent Features Adapt to the Task. By contrast, our aim in this paper is to highlight
and discuss non-linear effects, in the (standard) regime where the tangent features and their
kernel evolve during training (e.g., Geiger et al., 2020; Woodworth et al., 2020).

As a first illustration of such effects, Fig. 1 shows visualizations of eigenfunctions of
the tangent kernel (ranked in nonincreasing order of the eigenvalues), during training of a
6-layer deep 256-unit wide MLP by gradient descent of the binary cross entropy loss, on
a simple classification task: y(x) = ±1 depending on whether x ∼ Unif[−1,1]2 is in the
centered disk of radius

√
2/π (details in Appendix B.3.1). After a number of iterations,

we observe (rotation invariant) modes corresponding to the class structure (e.g. boundary
circle) showing up in the top eigenfunctions of the learned kernel. We also note an increasing
spectrum anisotropy – for example, the ratio λ20/λ1, which is 1.5% at iteration 0, has dropped
to 0.2% at iteration 2000. The interpretation is that the tangent kernel (and the metric)
stretch along a relatively small number of directions that are highly correlated with the
classes during training. We quantify and investigate this effect in more detail below.

2The functions (uwj)P
j=1 form an orthonormal family in L2(ρ), i.e. Ex∼ρ[uwjuwj′ ] = δjj′ , and yield the

spectral decomposition kw(x, x̃) =
∑P

j=1 λwjuwj(x)uwj(x̃) of the tangent kernel as an integral operator (see
Appendix B.1.3).
3Intuitively, the eigenvalue λwj can be thought of as defining a local ‘learning speed’ for the mode j.
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Figure 2. Evolution of the tangent kernel spectrum (max, average and median eigenvalues),
effective rank (6.3.1) and trace ratios (6.3.2) during training of a VGG19 on CIFAR10 with
various ratio of random labels, using cross-entropy and SGD with batch size 100, learning rate 0.01
and momentum 0.9. Tangent kernels are evaluated on batches of size 100 from both the training
set (solid lines) and the test set (dashed lines). The plots in the top row show train/test accuracy.
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Figure 3. Evolution of the (tangent) feature alignment with class labels as measured by
CKA (6.3.3), during training of a VGG19 on CIFAR10 (same setup as in Fig. 2). Tangent kernels
and label vectors are evaluated on batches of size 100 from both the training set (solid lines) and
the test set (dashed lines). The plots in the last two rows show the alignment of tangent features
associated to each layer. Layers are mapped to colors sequentially from input layer (-), through
intermediate layers (-), to output layer (-). See Fig. 5 and 7 in Appendix B.3 for additional
architectures and datasets.

6.3. Neural Feature Alignment
In this section, we study in more detail the evolution of the tangent features during

training. Our main results are to highlight (i) a sharp increase of the anisotropy of their
spectrum early in training; (ii) an increasing similarity with the class labels, as measured by
centered kernel alignment (CKA) (Cristianini et al., 2001; Cortes et al., 2012). tends as
a combined mechanism of feature selection and model compression.
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6.3.1. Setup

We run experiments on MNIST (LeCun et al., 2010) and CIFAR10 (Krizhevsky & Hinton,
2009) with standard MLPs, VGG (Simonyan & Zisserman, 2015) and Resnet (He et al.,
2016a) architectures, trained by stochastic gradient descent (SGD) with momentum, using
cross-entropy loss. We use PyTorch (Paszke et al., 2019a) and NNGeometry (George, 2021)
for efficient evaluation of tangent kernels.

In multiclass settings, tangent kernels evaluated on n samples carry additional class
indices y ∈ {1 · · · c} and thus are nc × nc matrices, (Kw)yy′

ij := kw(xi, y; xj, y′) (details in
Appendix B.1.4). In all our experiments, we evaluate tangent kernels on mini-batches of size
n = 100 from both the training set and the test set; for c = 10 classes, this yields kernel
matrices of size 1000 × 1000. We report results obtained from centered tangent features
Φw(x) → Φw(x) − ExΦw(x), though we obtain qualitatively similar results for uncentered
features (see plots in Appendix B.3.2).

6.3.2. Spectrum Evolution

We first investigate the evolution of the tangent kernel spectrum for a VGG19 on CIFAR
10, trained with and without label noise (Fig. 2). The take away is an anisotropic increase of
the spectrum during training. We report results for kernels evaluated on training examples
(solid line) and test examples (dashed line).4

The first observation is a significant increase of the spectrum, early in training (note
the log scale for the x-axis). By the time the model reaches 100% training accuracy, the
maximum and average eigenvalues (Fig. 2, 2nd row) have gained more than 2 orders of
magnitude.

The second observation is that this evolution is highly anisotropic, i.e larger eigenvalues
increase faster than lower ones. This results in a (sharp) increase of spectrum anisotropy,
early in training. We quantify this using a notion of effective rank based on spectral entropy
(Roy & Vetterli, 2007). Given a kernel matrix K in Rr×r with (strictly) positive eigenvalues
λ1, · · · , λr, let µj = λj/

∑r
i=1 λj be the trace-normalized eigenvalues. The effective rank is

defined as erank = exp(H(µ)) where H(µ) is the Shannon entropy,

erank = exp(H(µ)), H(µ) = −
r∑

j=1
µj log(µj). (6.3.1)

This effective rank is a real number between 1 and r, upper bounded by rank(K), which
measures the ‘uniformity’ of the spectrum through the entropy. We also track the various

4The striking similarity of the plots for train and test kernels suggests that the spectrum of empirical tangent
kernels is robust to sampling variations in our setting.
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Figure 4. Alignment easy versus difficult: We augment a dataset composed of 10.000 easy MNIST
examples with 1000 difficult examples from 2 different setups: (left) 1000 MNIST examples with
random label (right) 1000 KMNIST examples. We train a MLP with 6 layers of 80 hidden units
using SGD with learning rate=0.02, momentum=0.9 and batch size=100. We observe that the
alignment to (train) labels increases faster and to a higher value for the easy examples.

trace ratios
Tk =

∑
j<k

λj/
∑

j

λj, (6.3.2)

which quantify the relative importance of the top k eigenvalues.
We note (Fig. 2, third row) a drop of the effective rank early in training (e.g. to less than

10% of its initial value in our experiments with no random labels; less than 20% when half
of the labels are randomized). This can also be observed from the highlighted (in red) trace
ratios T40, T80 and T160 (Fig. 2, fourth row), e.g. the first top 40 eigenvalues (T40), over 1000
in total, accounting for more than 70% of the total trace.

Remarkably, in the presence of high label noise, the effective rank of the tangent kernel
(and hence that of the metric) evaluated on training examples (anti)-correlates nicely with
the test accuracy: while decreasing and remaining relatively low during the learning phase
(increase of test accuracy), it begins to rise again when overfitting starts (decrease of test
accuracy). This suggests that this effective rank already provides a good proxy for the
effective capacity of the network.

6.3.3. Alignment to class labels

We now include the evolution of the eigenvectors in our study. We investigate the simi-
larity of the learned tangent features with the class label through centered kernel alignment.
Given two kernel matrices K and K ′ in Rr×r, it is defined as (Cortes et al., 2012)

CKA(K,K ′) = Tr[KcK
′
c]

∥Kc∥F∥K ′
c∥F

∈ [0, 1] (6.3.3)

where the subscript c denotes the feature centering operation, i.e. Kc = CKC where
C = Ir − 1

r
11T is the centering matrix, and ∥ · ∥F is the Froebenius norm. CKA is a
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normalized version of the Hilbert-Schmidt Independence Criterion (Gretton et al., 2005)
designed as a dependence measure for two sets of features. The normalization makes CKA
invariant under isotropic rescaling.

Let Y ∈ Rnc be the vector resulting from the concatenation of the one-hot label repre-
sentations Yi ∈ Rc of the n samples. Similarity with the labels is measured through CKA
with the rank-one kernel KY := Y Y ⊤. Intuitively, CKA(K,KY ) is high when K has low
(effective) rank and such that the angle between Y and its top eigenspaces is small.5 Max-
imizing such an index has been used as a criterion for kernel selection in the literature on
learning kernels (Cortes et al., 2012).

With the same setup as in Section 6.3.2, we observe (Fig. 3, 2nd row) an increasingly
high CKA between the tangent kernel and the labels as training progresses. The trend is
similar for other architectures and datasets (e.g., Fig. 5 in Appendix B.3 shows CKA plots
for MLP on MNIST and Resnets 18 on CIFAR10).

Interestingly, in the presence of high level noise, the CKA reaches a much higher value
during the learning phase (increase of test accuracy) for tangent kernels and labels evaluated
for test than for train inputs (note test labels are not randomized). Together with Equ. 6.2.4,
this suggests a stronger learning bias towards features predictive of the clean labels. This is
line with empirical observations that, in the presence of noise, deep networks ‘learn patterns
faster than noise’ (Arpit et al., 2017) (see Section 6.3.4 below for additional insights).

We also report the alignments of the layer-wise tangent kernels. By construction, the
tangent kernel, obtained by pairing features Φwp(x)Φwp(x̃) and summing over all parameters
wp of the network, can also be expressed as the sum of layer-wise tangent kernels, Kw =∑L

ℓ=1K
ℓ
w, where Kℓ

w results from summing only over parameters of the layer ℓ. We observe
a high CKA, reaching more than 0.5 for a number of intermediate layers.6 In the presence
of high label noise, we note that CKAs tend to peak when the test accuracy does.

6.3.4. Hierarchical Alignment

A key aspect of the generalization question concerns the articulation between learning
and memorization, in the presence of noise (Zhang et al., 2017a) or difficult examples (e.g.,
Sagawa et al., 2020b). Motivated by this, we would like to probe the evolution of the tangent
features separately in the directions of both types of examples in such settings. To do so,
our strategy is to measure CKA for tangent kernels and label vectors evaluated on examples
from two subsets of the same size in the training dataset – one with ‘easy’ examples, the
other with ‘difficult’ ones. Our setup is to augment 10.000 MNIST training examples with
1000 difficult examples of 2 types: (i) examples with random labels and (ii) examples from

5In the limiting case CKA(K,KY ) = 1, the features are all aligned with each other and parallel to Y .
6We were expecting to see a gradually increasing CKA with ℓ; we do not have any intuitive explanation for
the relatively low alignment observed for the very top layers.
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the dataset KMNIST Clanuwat et al. (2018). KMNIST images present features similar to
MNIST digits (grayscale handwritten characters) but represent Japanese characters.

The results are shown in Fig. 4. As training progresses, we observe that the CKA on
the easy examples increases faster (and to a higher value) than that on the difficult ones;
in the case of the (structured) difficult examples from KMNIST, we also note an increase of
the CKA later in training. This demonstrates a hierarchy in the adaptation of the kernel,
measured by the ratio between both alignments. From the intuition developed in the paper
(see spectral bias in Equ.(6.2.4)), we interpret this aspect of the non-linear dynamics as
favoring a sequentialization of learning across patterns of different complexity (‘easy patterns
first’), a phenomenon analogous to one pointed out in the context of deep linear networks
(Saxe et al., 2014; Lampinen et al., 2018; Gidel et al., 2019).

6.3.5. Sensitivity analysis

Effect of depth. In order to study the influence of depth on alignment and test the
robustness to the choice of seeds, we reproduce the experiment of the previous section for
MLP with different depths, while varying parameter initialization and minibatch sampling.
Our results, shown in Fig 7 (Appendix B.3), suggest that the alignment effect is magnified as
depth increases. We also observe that the ratio of the maximum alignment between easy and
difficult examples is increased with depth, but stays high for a smaller number of iterations.

Effect of the learning rate. We observed in our experiments that increasing the
learning rate tend to enhance alignment effects.7. As an illustration, we reproduce in Fig. 8
the same plots as in Fig. 2, for a learning rate reduced to 0.003. We observe a similar drop
of the effective rank as in Fig. 2 at the beginning of training, but to a much (about 3 times)
higher value.

6.4. Measuring Complexity
In this section, drawing upon intuitions from linear models, we illustrate in a simple

setting how the alignment of tangent features can act as implicit regularization. By extrapo-
lating Rademacher complexity bounds for linear models, we also motivate a new complexity
measure for neural networks and compare its correlation to generalization against various
measures proposed in the literature. We refer to Appendix B.2 for a review of classical
results, further technical details, and proofs.

7Note that for wide enough networks and small enough learning rate, we expect to recover the linear regime
where the tangent features are constant during training (Jacot et al., 2018; Du et al., 2019b; Allen-Zhu et al.,
2019).
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6.4.1. Insights from Linear Models

6.4.1.1. Setup. We restrict here to scalar functions fw(x) = ⟨w, Φ(x)⟩ linearly
parametrized by w ∈ RP . Such a function class defines a constant (tangent) kernel and
geometry, as defined in Section 6.2. Given n input samples, the n features Φ(xi) ∈ RP yield
an n× P feature matrix Φ.

Our discussion will be based on the (empirical) Rademacher complexity, which shows
up in generalization bounds Bartlett & Mendelson (2002); see Appendix B.2.2 for a review.
It measures how well F correlates with random noise on the sample set S:

R̂S(F) = Eσ∈{±1}n

[
sup
f∈F

1
n

n∑
i=1

σif(xi)
]

. (6.4.1)

The Rademacher complexity depends on the size (or capacity) of the class F . Constraints
on the capacity, such as those induced by the implicit bias of the training algorithm, can
reduce the Rademacher complexity and lead to sharper generalization bounds.

A standard approach for controlling capacity is in terms of the norm of the weight vector
– usually the ℓ2-norm. In general, given any invertible matrix A ∈ RP ×P , we may consider
the norm ∥w∥A :=

√
w⊤gAw induced by the metric gA = AA⊤. Consider the (sub)classes of

functions induced by balls of given radius:

FA
MA

= {fw : x 7→ ⟨w, Φ(x)⟩ | ∥w∥A ≤MA}. (6.4.2)

A direct extension of standard bounds for the Rademacher complexity (see Appendix B.2.3)
yields,

R̂S(FA
MA

) ≤ (MA/n)∥A−1Φ⊤∥F (6.4.3)

where ∥A−1Φ⊤∥F is the Froebenius norm of the rescaled feature matrix.8

This freedom in the choice of rescaling matrix A raises the question of which of the
norms ∥ · ∥A provide meaningful measures of the model’s capacity. Recent works (Belkin
et al., 2018; Muthukumar et al., 2020) pointed out that using ℓ2 norm is not coherently
linked with generalization in practice. We discuss this issue in Appendix B.2.5, illustrating
how meaningful norms critically depend on the geometry defined by the features.

6.4.1.2. Feature Alignment as Implicit Regularization. Here we describe a simple pro-
cedure making the geometry adaptive along optimization paths. The goal is to illustrate in
a simple setting how feature alignment can impact complexity and generalization, in a way
that mimics the behaviour of a non-linear dynamics. The idea is to learn a rescaling metric
at each iteration of our algorithm, using a local version of the bounds (6.4.3).

Complexity of Learning Flows. Since we are interested in functions fw that result from
an iterative algorithm, we consider functions fw = ∑

t δfwt written in terms of a sequence
8We also have ∥A−1Φ⊤∥F =

√
TrKA in terms of the (rescaled) kernel matrix KA = Φg−1

A Φ⊤.
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SuperNat update (Ã0 = I, Φ0 = Φ, K0 =
K):

(1) Perform gradient step w̃t+1 ← wt +
δwGD

(2) Find minimizer Ãt+1 of ∥δwGD∥Ã∥Ã−1Φ⊤
t ∥F

(3) Reparametrize:
wt+1 ← Ã⊤

t+1w̃t+1, Φt+1 ← Ã−1
t+1Φt
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Figure 5. (left) SuperNat algorithm and (right) validation curves obtained with standard
and SuperNat gradient descent, on the noisy linear regression problem. At each iteration, Su-
perNat identifies dominant features and stretches the kernel along them, thereby slowing down
and eventually freezing the learning dynamics in the noise direction. This naturally yields better
generalization than standard gradient descent on this problem.

of updates9 δfwt(x) = ⟨δwt, Φ(x)⟩ (we set f0 = 0 to keep the notation simple), with local
constraints on the parameter updates:

FA
m = {fw : x 7→ ∑

t⟨δwt, Φ(x)⟩ | ∥δwt∥At ≤ mt} (6.4.4)

The result (6.4.3) extends as follows.
Theorem 6.4.1 (Complexity of Learning Flows). Given any sequences A and m of invert-
ible matrices At ∈ RP ×P and positive numbers mt > 0, we have the bound

R̂S(FA
m) ≤ ∑t(mt/n)∥A−1

t Φ⊤∥F. (6.4.5)

Note that, by linear reparametrization invariance w 7→ A⊤w, Φ 7→ A−1Φ, the same result
can be formulated in terms of the sequence Φ = {Φt}t of feature maps Φt = A−1

t Φ. The
function class (6.4.4) can equivalently be written as

FΦ
m = {fw : x 7→ ∑

t⟨δ̃wt, Φt(x)⟩ | ∥δ̃wt∥2 ≤ mt} (6.4.6)

In this formulation, the result (6.4.5) reads:

R̂S(FΦ
m) ≤ ∑t(mt/n)∥Φt∥F. (6.4.7)

Optimizing the Feature Scaling. To obtain learning flows with lower complexity,
Thm. 6.4.1 suggests modification of the algorithm to include, at each iteration t, a
reparametrization step with a suitable matrix Ãt giving a low contribution to the bound
(6.4.5). Applied to gradient descent (GD), this leads to a new update rule sketched in
9In order to not assume a specific upper bound on the number of iterations, we can think of the updates
from an iterative algorithm as an infinite sequence {δw0, · · · δwt, · · · } such that for some T , δwt = 0 for all
t > T .
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Figure 6. Complexity measures on MNIST with a 1 hidden layer MLP (left) as we increase the
hidden layer size, (center) for a fixed hidden layer of 256 units as we increase label corruption and
(right) for a VGG19 on CIFAR10 as we vary the number of channels. All networks are trained
until cross-entropy reaches 0.01. Our proposed complexity measure and the one by Neyshabur et
al. 2018 are the only ones to correctly reflect the shape of the generalization gap in these settings.

Fig. 5 (left), where the optimization in Step 2 is over a given class of reparametrization
matrices. The successive reparametrizations yield a varying feature map Φt = A−1

t Φ where
At = Ã0 · · · Ãt.10

In the original representation Φ, SuperNat amounts to natural gradient descent (Amari,
1998) with respect to the local metric gAt = AtA

⊤
t . By construction, we also have δfwt(x) =

⟨δwGD, Φt(x)⟩ where δwGD are standard gradient descent updates in the linear model with
feature map Φt.

As an example, let Φ = ∑n
j=1

√
λjujv

⊤
j be the SVD of the feature matrix. We restrict to

the class of matrices
Ãν =

n∑
j=1

√
νjvjv

⊤
j + Idspan{v}⊥ (6.4.8)

labelled by weights νj > 0, j = 1, · · · , n. With such a class, the action Φ⊤
t → A−1

ν Φ⊤
t merely

rescales the singular values λjt → λjt/νj, leaving the singular vectors unchanged. We work
with gradient descent w.r.t a cost function L, so that δwGD = −η∇wL.
Proposition 6.4.2. Any minimizer in Step 2 of SuperNat over matrices Ãν in the class
(6.4.8), takes the form

ν∗
jt = κ

1
|u⊤

j∇fwL|
(6.4.9)

where ∇fw denotes the gradient w.r.t the sample outputs fw := [fw(x1), · · · fw(xn)]⊤, for
some constant κ > 0.

10Note that upon training a non-linear model, the updates of the tangent features take the same form
Φt = Ã−1

t Φt−1 as in Step 3 of SuperNat, the difference being that Ãt is now a differential operator, e.g. at
first order Ãt = Id− δw⊤

t
∂

∂wt
.
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In this context, this yields the following update rule, up to isotropic rescaling, for the
singular values of Φt:

λj(t+1) = |u⊤
j∇fwL|λjt. (6.4.10)

In this illustrative setting, we see how the feature map (or kernel) adapts to the task, by
stretching (resp. contracting) its geometry in directions uj along which the residual ∇fwL

has large (resp. small) components. Intuitively, if a large component |u⊤
j∇fwL| corresponds

to signal and a small one |u⊤
k∇fwL| corresponds to noise, then the ratio λjt/λkt of singular

values gets rescaled by the signal-to-noise ratio, thereby increasing the alignment of the
learned features to the signal.

As a proof of concept, we consider the following regression setup. We consider a
linear model with Gaussian features Φ = [φ,φnoise] ∈ Rd+1 where φ ∼ N (0,1) and
φnoise ∼ N (0, 1

d
Id). Given n input samples, the n features Φ(xi) yield φ ∈ Rn and

φnoise ∈ Rn×d. We assume the label vector takes the form y = φ+ Pnoise(ϵ), where Gaussian
noise ϵ ∼ N (0, σ2In) is projected onto the noise features through Pnoise = φnoiseφ

⊤
noise. The

model is trained by gradient descent of the mean squared loss and its SuperNat variant,
where Step 2 uses the analytical solution of Proposition 6.4.2. We set d = 10, σ2 = 0.1 and
use n = 50 training points.

Fig 5 (right) shows test error obtained with standard and SuperNat gradient descent on
this problem. At each iteration, SuperNat identifies dominant features (feature selection,
here φ) and stretches the metric along them, thereby slowing down and eventually freezing
the dynamics in the orthogonal (noise) directions (compression). The working hypothesis in
this paper, supported by the observations of Section 6.3, is that for neural networks, such a
(tangent) feature alignment is dynamically induced as an effect of non-linearity.

6.4.2. A New Complexity Measure for Neural Networks

Equ. (6.4.7) provides a bound of the Rademacher complexity for the function classes
(6.4.4) specified by a fixed sequence of feature maps (see Appendix B.2.4 for a generalization
to the multiclass setting). By extrapolation to the case of non-deterministic sequences of
feature maps, we propose using

C(fw) =
∑

t

∥δwt∥2∥Φt∥F (6.4.11)

as a heuristic measure of complexity for neural networks, where Φt is the learned tangent
feature matrix11 at training iteration t, and ∥δwt∥2 is the norm of the SGD update. Following
a standard protocol for studying complexity measures (e.g., Neyshabur et al., 2017a), Fig. 6
shows its behaviour for MLP on MNIST and VGG19 on CIFAR10 trained with cross entropy
loss, with (left) fixed architecture and varying level of corruption in the labels and (right)

11In terms of tangent kernels, ∥Φt∥F =
√

TrKt where Kt is the tangent kernel (Gram) matrix.
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varying hidden layer size/number of channels up to 4 millions parameters, against other
capacity measures proposed in the recent literature. We observe that it correctly reflects the
shape of the generalization gap.

6.5. Related Work
Role of Feature Geometry in Linear Models. Analysis of the relation between

capacity and feature geometry can be traced back to early work on kernel methods (Schölkopf
et al., 1999a), which lead to data-dependent error bounds in terms of the eigenvalues of the
kernel Gram matrix (Schölkopf et al., 1999b).

Recently, new analysis of minimum norm interpolators and max margin solutions for
overparametrized linear models emphasize the key role of feature geometry, and specifically
feature anisotropy, in the generalization performance (Bartlett et al., 2019; Muthukumar
et al., 2019, 2020; Xie et al., 2020). Feature anisotropy combined to a high predictive power
of the dominant features is the condition for a high centered alignment between kernel and
class labels. In the context of neural networks, our results highlight the role of the non linear
training dynamics in favouring such conditions.

Generalization Measures. There has been a large body of work on complexity/gener-
alization measures for neural networks (see Jiang et al., 2020, and references therein), some
of which theoretically motivated by norm or margin based bounds (e.g., Neyshabur et al.,
2019; Bartlett et al., 2017). Liang et al. (2019) proposed using the Fisher-Rao norm of
the solution as a geometrically invariant complexity measure. By contrast, our approach
to measuring complexity takes into account the geometry along the whole optimization tra-
jectories. Since the geometry we consider is defined through the gradient second moments,
our perspective is closely related to the notions of stiffness (Fort et al., 2019) and coherent
gradients (Chatterjee, 2020).

Dynamics of Tangent Kernels. Several recent works investigated the ’feature learning’
regime where neural tangent kernels evolve during training (Geiger et al., 2020; Woodworth
et al., 2020). Independent concurrent works highlight alignment and compression phenomena
similar to the one we study here (Kopitkov & Indelman, 2020; Paccolat et al., 2021). We
offer various complementary empirical insights, and frame the alignment mechanism from
the point of view of implicit regularization.

6.6. Conclusion
Through experiments with modern architectures, we highlighted an effect of dynamical

alignment of the neural tangent features and their kernel along a small number of task-
dependent directions during training, reflected by an early drop of the effective rank and an
increasing similarity with the class labels, as measured by centered kernel alignment. We
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interpret this effect as a combined mechanism of feature selection and model compression of
around dominant features.

Drawing upon intuitions from linear models, we argued that such a dynamical alignment
acts as implicit regularizer. By extrapolating a new analysis of Rademacher complexity
bounds for linear models, we also proposed a complexity measure that captures this phe-
nomenon, and showed that it correlates with the generalization gap when varying the number
of parameters, and when increasing the proportion of corrupted labels.

The results of this paper open several avenues for further investigation. The type of
complexity measure we propose suggests new principled ways to design algorithms that
learn the geometry in which to perform gradient descent (Srebro et al., 2011; Neyshabur
et al., 2017b). Whether a procedure such as SuperNat can produce meaningful practical
results for neural networks remains to be seen.

One of the consequences one can expect from the alignment effects highlighted here is to
bias learning towards explaining most of the data with a small number of highly predictive
features. While this feature selection ability might explain in part the performance of neu-
ral networks on a range of supervised tasks, it may also make them brittle under spurious
correlation (e.g., Sagawa et al., 2020b) and underpin their notorious weakness to general-
ize out-of-distribution (e.g., Geirhos et al., 2020). Resolving this tension is an important
challenge towards building more robust models.
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Chapter 7

Conclusion and discussion

7.1. Summary
Trained deep learning models are the result of an iterative optimization algorithm (i.e.

variants of gradient descent) that travels through the parameter space from a randomly
initialized state w0, to final parameters wT after T iterates. The final function used as a
predictor is thus an ensemble of the contributions gt of each of these iterates:

fwT
= fw0 +

T −1∑
t=0

(
fwt+1 − fwt

)
︸ ︷︷ ︸

:=gt

(7.1.1)

In this thesis, we studied the local linearization of iterates {gt}t:

gt (x) = ⟨δwt, Φwt(x)⟩+ O(∥δwt∥2) (7.1.2)

We argued that studying the sequence of Jacobians/tangent features {Φwt}t is a promis-
ing avenue in order to improve our understanding of the properties of trained deep models,
along the following axes:

(1) We released a software library that enables to work with Jacobians, Neural Tangent
Kernels and Fisher Information Matrices flawlessly through a unified Application
Programming Interface. We described new algorithmic enhancements to manipulate
these objects even in highly overparameterized settings where they cannot fit in
memory (Chapter 3).

(2) We introduced an efficient approximate to the Fisher Information Matrix, proved
that it is more accurate than previously published analogous techniques, and that
it can be re-estimated at low computational cost when parameters vary. We used it
in the natural gradient algorithm to counteract the ill-conditioning of the Jacobians
(Chapter 4).

(3) We compared the full training dynamics of deep networks to linearized dynamics
at initialization, using groups of examples, and showed that the sequentialization of



learning from easy to difficult examples is magnified in the full training dynamics.
Compared to recent results that use the NTK in the infinite-width limit regime,
this suggests a more pronounced implicit bias towards a predictor relying on the
most representative examples in the training dataset, while essentially discarding
less relevant examples in a first phase of the training course (Chapter 5).

(4) We discovered that the time-varying Neural Tangent Kernel increasingly aligns to the
target kernel during training, leading to a regularization mechanism that restricts the
effective capacity of trained models to a few directions in function space. We derived
a complexity measure for families of functions resulting from a sequence of kernels,
mimicking our modelling of the full training dynamics. Through a sensitivity analysis,
we showed that this measure correlates with the generalization gap as we vary the
number of parameters or the noise level in the training dataset (Chapter 6).

These findings are some building blocks in a global effort for a comprehensive theory
explaining generalization in deep learning. We are however still far from fully cracking the
mystery of their good properties or their failure modes.

7.2. Proposed future avenues
This thesis suggests exploring some future avenues:

Adoption of optimization methods. There are still some drawbacks when using more
sophisticated optimization methods such as the natural gradient in place of first order meth-
ods, that hinder wider adoption, and call for more research effort. By allowing to take larger
steps, they are often working on the edge of stability, where a slightly larger steps (caused
by a too large learning rate, or a too small damping parameter) will cause the loss to blow
up. The main issue with current minibatched algorithms is to deal with stochastic estimates
of i) the gradient and ii) the FIM as well as the fact that we do not work with the full
FIM but rather an estimate of it. Following the work of Mahsereci & Hennig (2015) that
propose a technique for an adaptive learning rate in such as setting, it could be interesting
to develop a similar approach for the damping parameter. The ultimate goal would be to
package a versatile optimizer that can replace more popular methods such as SGD with
momentum, that would accelerate training with default parameters in most cases, while not
hurting generalization

Architectures and 2nd order. We also propose the hypothesis that current architectures
are tuned to be trainable by first order methods, since they were developed using frameworks
that foster trying them first. An interesting avenue of research would be to explore this
hypothesis, keeping in mind that biological neural networks (i.e. brains) certainly do not use
first order methods, and that they remain the best general purpose learning systems.
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Salient directions. The elephant in the room to the attentive reader of this thesis is the
apparent contradiction between the last chapters (5 and 6) that suggest that the reason for
the good generalization properties of deep learning is that they favor a few salient directions,
and Chapter 4 where we study a natural gradient optimizer, that precisely amplifies less
representative directions. We conjecture that this is where the damping parameter plays an
important role: too small a damping parameter and we race in all directions, including those
detrimental to generalization; too large a damping parameter and we successfully filter out
small modes, but at the cost of a slower optimization of the training loss. In the context of
kernelized linear models, Ma & Belkin (2017) advocate for a hard cut-off that selects a few
top modes and zeros out other directions, an idea that could be adapted to neural network
training.

Data-adaptive methods. The insights from Chapter 5 comparing linear and non-linear
training regimes suggest that while in most cases the full non-linear training dynamics is
beneficial to generalization, by contrast in presence of spurious correlations, it makes the
trained model more sensible to the spuriously correlated features. A follow-up could be to
design an optimizer that adaptively tunes the regime during training. More generally, recent
works (Sagawa et al., 2020b; Hooker et al., 2020) that study the importance of groups of
examples between a head of representative examples and a tail of examples that are merely
memorized, may inspire new algorithms that weight examples differently.

7.3. Closing words
Over the past decade, there has been a significant shift in the perception of neural

networks, from being considered too enigmatic to be practically useful, to their current
widespread deployment in various fields due to their practical successes. As intriguing as
it is, deep learning is changing many aspects of our societies. It is capable of improving
automation of tedious work, freeing humanity to do other more interesting activities, but it
is also capable of piloting automated weapons, create nearly indistinguishable fake videos
or influencing our shopping behaviors. As researchers, it is important that we develop tools
to analyze deep learning models in order to explain to the public what can be done so that
applications of Artificial Intelligence are beneficial to humanity, and the dystopias pictured
in science-fiction movies never arise.
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Appendix A

Fast Approximate Natural Gradient Descent
in a Kronecker-factored Eigenbasis

Supplementary material

A.1. Kronecker product primer
In chapter 4 we make a heavy usage of the Kronecker product. This appendix gives some

relevant properties of this tool.

Definition 3 (Kronecker product). Let A be a m × n matrix with coefficients aij and B

be a p × q matrix with coefficients bij. The Kronecker product A ⊗ B of A and B is the
following mp× nq matrix:

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
... ... . . . ...

am1B am2B · · · amnB


It corresponds to a tensor product with a particular reshaping so as to obtain a matrix

(instead of a higher order tensor).
The following properties hold:

• (A⊗B) (C ⊗D) = AC ⊗ BD when the matrix-matrix products AC and BD are
defined.
• (A⊗B)−1 = A−1 ⊗B−1 when A and B are invertible matrices
• (A⊗B)⊤ = A⊤ ⊗B⊤

• rank (A⊗B) = rank (A) rank (B)



• if λA is a singular value of A with corresponding singular vector vA and λB is a
singular value of B with corresponding singular vector vB then λAλB is a singular
value of A⊗B with corresponding singular vector vA ⊗ vB

A.2. Proofs
A.2.1. Proof that EKFAC does optimal diagonal rescaling in the KFE

Lemma 1. Let G = E
[
∇θ∇⊤

θ

]
a real positive semi-definite matrix. And let Q a given

orthogonal matrix. Among diagonal matrices, diagonal matrix D with diagonal entries Dii =
E
[(

Q⊤∇θ

)2

i

]
minimize approximation error e =

∥∥∥G−QDQ⊤
∥∥∥

F
(measured as Frobenius

norm).

Proof. Since the Frobenius norm remains unchanged through multiplication by an orthog-
onal matrix we can write

e2 =
∥∥∥G−QDQ⊤

∥∥∥2

F

=
∥∥∥Q⊤

(
G−QDQ⊤

)
Q
∥∥∥2

F

=
∥∥∥Q⊤GQ−D

∥∥∥2

F

=
∑

i

(Q⊤GQ−D)2
ii︸ ︷︷ ︸

diagonal

+
∑

i

∑
j ̸=i

(Q⊤GQ)2
ij︸ ︷︷ ︸

off-diagonal

Since D is diagonal, it does not affect the off-diagonal terms.
The squared diagonal terms all reach their minimum value 0 by setting Dii =

(
Q⊤GQ

)
ii

for all i:

Dii =
(
Q⊤GQ

)
ii

=
(
Q⊤E

[
∇θ∇⊤

θ

]
Q
)

ii

=
(
E
[
Q⊤∇θ∇⊤

θ Q
])

ii

=
(
E
[
Q⊤∇θ

(
Q⊤∇θ

)⊤
])

ii

= E
[(

Q⊤∇θ

)2

i

]
since Q⊤∇θ is a vector

We have thus shown that diagonal matrix D with diagonal entries Dii = E
[(

Q⊤∇θ

)2

i

]
minimize e2. Since Frobenius norm e is non-negative this implies that D also minimizes
e. □
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Theorem 1. Let G = E
[
∇θ∇⊤

θ

]
the matrix we want to approximate. Let GKFAC = A⊗ B

the approximation of G obtained by KFAC. Let A = UASAU⊤
A and B = UBSBU⊤

B eigen-
decomposition of A and B. The diagonal rescaling that EKFAC does in the Kronecker-
factored Eigenbasis (KFE) UA ⊗ UB is optimal in the sense that it minimizes the Frobe-
nius norm of the approximation error: among diagonal matrices D, approximation error
e =

∥∥∥G− (UA ⊗ UB)D(UA ⊗ UB)⊤
∥∥∥

F
is minimized by the matrix with with diagonal entries

Dii = s∗
i = E

[(
(UA ⊗ UB)⊤∇θ

)2

i

]
.

Proof. This follows directly by setting Q = UA⊗UB in Lemma 1. Note that the Kronecker
product of two orthogonal matrices yields an orthogonal matrix.

□

Theorem 2. Let GKFAC the KFAC approximation of G and GEKFAC the EKFAC approxi-
mation of G, we always have ∥G−GEKFAC∥F ≤ ∥G−GKFAC∥F .

Proof. This follows trivially from Theorem 1 on the optimality of the EKFAC diagonal
rescaling.

Since D = S∗, with the S∗ = diag(s∗) of EKFAC, minimizes
∥∥∥G− (UA ⊗ UB)D(UA ⊗ UB)⊤

∥∥∥
F

,
it implies that:

∥G− (UA ⊗ UB)S∗(UA ⊗ UB)⊤∥F ≤ ∥G− (UA ⊗ UB)(SA ⊗ SB)(UA ⊗ UB)⊤∥F

∥G−GEKFAC∥F ≤ ∥G− (UASAU⊤
A )⊗ (UBSBU⊤

B )∥F

∥G−GEKFAC∥F ≤ ∥G− A⊗B)∥F

∥G−GEKFAC∥F ≤ ∥G−GKFAC∥F

□

We have thus demonstrated that EKFAC yields a better approximation (more precisely: at
least as good in Frobenius norm error) of G than KFAC.

A.2.2. Proof that Sii = E
[(

U⊤∇θ

)2
i

]

Theorem 3. Let G = E
[
∇θ∇⊤

θ

]
and G = USU⊤ its eigendecomposition.

Then Sii = E
[(

U⊤∇θ

)2

i

]
.
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Proof. Starting from eigendecomposition G = USU⊤ and the fact that U is orthogonal so
that U⊤U = I we can write

G = USU⊤

U⊤GU = U⊤USU⊤U

U⊤ G︸︷︷︸
E[∇θ∇⊤

θ ]
U = S

so that

Sii =
(
U⊤E

[
∇θ∇⊤

θ

]
U
)

ii

=
(
E
[
U⊤∇θ∇⊤

θ U
])

ii

=
(
E
[
U⊤∇θ

(
U⊤∇θ

)])
ii

= E
[(

U⊤∇θ

(
U⊤∇θ

))
ii

]
= E

[(
U⊤∇θ

)2

i

]
where we obtained the last equality by observing that U⊤∇θ is a vector and that the diagonal
entries of the matrix aa⊤ for any vector a are given by a2 where the square operation is
element-wise. □

A.3. Residual network initialization
To train residual networks without using BN, one need to initialize them carefully, so we

used the following procedure, denoting n the fan-in of the layer:
(1) We use the He initialization for each layer directly preceded by a ReLU (He et al.,

2015): W ∼ N (0, 2/n), b = 0.
(2) Each layer not directly preceded by an activation function (for example the convo-

lution in a skip connection) is initialized as: W ∼ N (0, 1/n), b = 0. This can be
derived from the He initialization, using the Identity as activation function.

(3) Inspired from Goyal et al. (2017), we divide the scale of the last convolution in each
residual block by a factor 10: W ∼ N (0, 0.2/n), b = 0. This not only helps preserving
the variance through the network but also eases the optimization at the beginning of
the training.

A.4. Initialization of ϵ

Both KFAC and EKFAC are very sensitive to the the damping parameter ϵ. When
EKFAC is applied to deep neural networks, we empirically observe that adding ϵ to the
eigenvalues of both the activation covariance and gradient covariance matrices lead to better
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optimization than using a fixed ϵ added directly on the eigenvalues in KFE space. KFAC
uses also a similar initialization for ϵ. By setting diag(ϵ′) = ϵI + SA ⊗

√
ϵIdout +

√
ϵIdin ⊗ SB

, we can implement this initialization strategy directly in the KFE.

A.5. Additional empirical results
A.5.1. Impact of batch size

In this section, we evaluate the impact of the batch size on the optimization performances
for KFAC and EKFAC. In Figure 1, we reports the training loss performance per epochs
for different batch sizes for VGG11. We observe that the optimization gain of EKFAC with
respect of KFAC diminishes as the batch size gets smaller.
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(c) Batch size = 1000

Figure 1. VGG11 on CIFAR-10. ED_freq (Inv_freq) corresponds to eigendecomposition (in-
verse) frequency. We perform model selections according to best training loss at each epoch. On
this setting, we observe that the optimization gain of EKFAC with respect of KFAC diminishes as
the batch size reduces.

In Figure 2, we look at the training loss per iterations and the training loss per compu-
tation time for different batch sizes, again on VGG11. EKFAC shows optimization benefits
over KFAC as we increase the batch size (thus reducing the number of inverse/eigendecom-
position per epoch). This gain does not translate in faster training in term of computation
time in that setting. VGG11 is a relatively small network by modern standard and the
SUA approximation remains computationally bearable on this model. We hypothesize that
using smaller batches, KFAC can be updated often enough per epoch to have a reasonable
estimation error while not paying a computational price too high.

In Figure 3, we perform a similar experiment on the Resnet34. In this setting, we observe
that the optimization gain of EKFAC with respect of KFAC remains consistent across batch
sizes.

A.5.2. Learning rate schedule

In this section we investigate the impact of a learning rate schedule on the optimization
of EKFAC. We use a similar setting than the CIFAR-10 experiment, except that we decay
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Figure 2. VGG11 on CIFAR-10. ED_freq (Inv_freq) corresponds to eigendecomposition (in-
verse) frequency. We perform model selections according to best training loss at each epoch. (a)
Training loss per iterations for different batch sizes. (b) Training loss per computation time for
different batch sizes. EKFAC shows optimization benefits over KFAC as we increases the batch size
(thus reducing the number of inverse/eigendecomposition per epoch). This gain does not translate
in faster training in terms of wall-clock time in that setting.

0 50 100 150 200
 Epoch(s)

10 4

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

SGD Momentum/BN
KFAC Inv_freq: 500
EKFAC_ra ED_freq:500

(a) Batch size = 200
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Figure 3. Resnet34 on CIFAR-10. ED_freq (Inv_freq) corresponds to eigendecomposition (in-
verse) frequency. We perform model selections according to best training loss at each epoch. In this
setting, we observe that the optimization gain of EKFAC with respect of KFAC remains consistent
across batch sizes.

the learning by 2 every 20 epochs. Figure 4 and 5 show that EKFAC still highlight some
optimization benefit, relatively to the baseline, when combined with a learning rate schedule.
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(a) Training loss
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Figure 4. VGG11 on CIFAR10 using a learning rate schedule. ED_freq (Inv_freq) corresponds
to eigendecomposition (inverse) frequency. In (a) and (b), we report the performance of the hyper-
parameters reaching the lowest training loss for each epoch (to highlight which optimizers perform
best given a fixed epoch budget).
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Figure 5. Resnet34 on CIFAR10 using a learning rate schedule. ED_freq (Inv_freq) corresponds
to eigendecomposition (inverse) frequency. In (a) and (b), we report the performance of the hyper-
parameters reaching the lowest training loss for each epoch (to highlight which optimizers perform
best given a fixed epoch budget).
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Appendix B

Implicit Regularization via
Neural Feature Alignment
Supplementary material



B.1. Tangent Features and Geometry
We describe in more formal detail some of the notions introduced in Section 6.2 of the

paper. We will consider general classes of vector-valued predictors:

F = {fw : X → Rc | w ∈ W}, (B.1.1)

where the parameter space W is a finite dimensional manifold of dimension P (typically
RP ). For multiclass classification, fw outputs a score fw(x)[y] for each class y ∈ {1 · · · c}.
Each function can also be viewed as a scalar function on X × Y where Y = {1 · · · c} is the
set of classes.

B.1.1. Metric

We assume that w → fw is a smooth mapping from W to L2(ρ,Rc), where ρ is some
input data distribution. The inclusion F ⊂ L2(ρ,Rc) equips F with the L2 scalar product
and corresponding norm:

⟨f, g⟩ρ := Ex∼ρ[f(x)⊤g(x)], ∥f∥ρ :=
√
⟨f, f⟩ρ (B.1.2)

The parameter space W inherits a metric tensor gw by pull-back of the scalar product
⟨f, g⟩ρ on F . That is, given ζ, ξ ∈ TwW ∼= RP on the tangent space at w (Lang, 2012),

gw(ζ, ξ) = ⟨∂ζfw, ∂ξfw⟩ρ (B.1.3)

where ∂ζfw = ⟨dfw, ζ⟩ is the directional derivative in the direction of ζ. Concretely, in a
given basis of RP , the metric is represented by the matrix of gradient second moments:

(gw)pq = Ex∼ρ

(∂fw(x)
∂wp

)⊤
∂fw(x)

∂wq

 (B.1.4)

where wp, p = 1, · · · , P are the parameter coordinates. The metric shows up by spelling out
the line element ds2 := ∥dfw∥2

ρ, since we have,

∥dfw∥2
ρ =

P∑
p,q=1
⟨∂fw

∂wp

dwp,
∂fw

∂wq

dwq⟩ρ =
P∑

p,q=1
(gw)pq dwpdwq (B.1.5)

B.1.2. Tangent Kernels

This geometry has a dual description in function space in terms of kernels. The idea is to
view the differential of the mapping w→ fw at each w as a map dfw : X ×Y → T ∗

wW ∼= Rp

defining (joined) features in the (co)tangent space. In a given basis, this yields the tangent
features given by the function derivatives w.r.t the parameters,

Φwp(x)[y] := ∂fw(x)[y]
∂wp

(B.1.6)
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The tangent feature map Φw can be viewed as a function mapping each pair (x, y) to a vector
in RP . It defines the so-called tangent kernel (Jacot et al., 2018) through the Euclidean
dot product ⟨·, ·⟩ in RP :

kw(x, y; x̃, y′) = ⟨Φw(x)[y], Φw(x̃)[y′]⟩ =
P∑

p=1
Φwp(x)[y]Φwp(x̃)[y′] (B.1.7)

It induces an integral operator on L2(ρ,Rc) acting as

(kw ▷ f)(x)[y] = ⟨kw(x, y; · ), f⟩ (B.1.8)

The metric tensor (B.1.4) is expressed in terms of the tangent features as (gw)pq =
⟨Φwp ,Φwq⟩ρ.

B.1.3. Spectral Decomposition

The local metric tensor (as symmetric P × P matrix) and tangent kernel (as rank P

integral operator) share the same spectrum. More generally, let

gw =
P∑

j=1
λwjvwjv

⊤
wj (B.1.9)

be the eigenvalue decomposition of the positive (semi-)definite symmetric matrix (B.1.4),
where v⊤

wjvwj′ = δjj′ . Assuming non-degeneracy, i.e λwj > 0, let uwj, j ∈ {1 · · ·P} be the
functions in L2(ρ,Rc) defined as:

uwj(x)[y] = 1√
λwj

v⊤
wjΦw(x)[y] (B.1.10)

The following result holds.
Proposition B.1.1 (Spectral decomposition). The functions (ujw)P

j=1 form an orthonormal
family in L2(ρ,Rc). They are eigenfunctions of the tangent kernel as an integral operator,
which admits the spectral decomposition:

kw(x, y; x̃, y′) =
P∑

j=1
λwj uwj(x)[y] uwj(x̃)[y′] (B.1.11)

In particular metric tensor and tangent kernels share the same spectrum.
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Proof. We first show orthonormality, i.e ⟨uwjuwj′⟩ρ = δjj′ . We have indeed,

⟨uwj, uwj′⟩ρ = 1√
λwjλwj′

P∑
p,q=1

(vwj)p(vwj)q⟨Φwp ,Φwq⟩ρ (B.1.12)

= 1√
λwjλwj′

v⊤
wj gw vwj′ (B.1.13)

= 1
λwj

λwjδjj′ (B.1.14)

= δjj′ (B.1.15)

where we used the definition of the matrix (gw)pq and its eigenvalue decomposition. Next,
using the action (B.1.8) of the tangent kernel, we prove that the functions uwj defined in
(B.1.10) is an eigenfunction with eigenvalue λwj:

(kw ▷ uwj)(x)[y] =
P∑

p=1
Φwp(x)[y]⟨Φwp , uwj⟩ρ (B.1.16)

= 1√
λwj

P∑
p,q=1

(vwj)q Φwp(x)[y]⟨Φwp , Φwq⟩ (B.1.17)

= 1√
λwj

v⊤
wj gw Φw(x)[y] (B.1.18)

= 1√
λwj

(λwjv
⊤
wj) Φw(x)[y] (B.1.19)

= λwj
1√
λwj

v⊤
wj Φw(x)[y] (B.1.20)

= λwj uwj (B.1.21)

Inserting the resolution of unity IdP = ∑P
j=1 vwjv

⊤
wj in the expression (B.1.7) of the tangent

kernel directly yields the spectral decomposition (B.1.11). □

B.1.4. Sampled Versions

Given n input samples x1, · · ·xn, any function f : X → Rc yields a vector f ∈ Rnc ob-
tained by concatenating the outputs f(xi) ∈ Rc of the n input samples xi. The sample
output scores fw(xi)[y] thus yields fw ∈ Rnc; and the tangent features Φwp(xi)[y] are rep-
resented as a nc × P matrix Φw. Using this notation, (B.1.4) and (B.1.7) yield the sample
covariance P × P matrix and kernel (Gram) nc× nc matrix:

Gw = Φw
⊤Φw, Kw = ΦwΦw

⊤ (B.1.22)
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Figure 1. Variations of fw (evaluated on a test set) when perturbing the parameters in the
directions given by the right singular vectors of the Jacobian (first 50 directions) or in randomly
sampled directions (last 50 directions) on a VGG11 network trained for 10 epochs on CIFAR10.
We observe that perturbations in most directions have almost no effect, except in those aligned
with the top singular vectors.

The eigenvalue decompositions of Gw and Kw follow from the (SVD) of Φw: assuming
P > nc, we can write this SVD by indexing the singular values by a pair J = (i, y) with
i = 1, · · ·n and y = 1 · · · c as

Φw =
nc∑

J=1

√
λ̂wJ ûwJ v̂

⊤
wJ (B.1.23)

Such decompositions summarize the predominant directions both in parameter and feature
space, in the neighborhood of w: a small variation δw induces the first order variation δfw

of the function,
δfw := Φwδw =

nc∑
J=1

√
λ̂wJ(v̂T

wJδw)ûwJ (B.1.24)

Fig. 1 illustrates this ‘hierarchy’ for a VGG11 network (Simonyan & Zisserman, 2015) trained
for 10 epoches on CIFAR10 (Krizhevsky & Hinton, 2009). We observe that perturbations in
most directions have almost no effect, except in those aligned with the top singular vectors.
This is reflected by a strong anisotropy of the tangent kernel spectrum. Recent analytical
results for wide random neural networks also point to such a pathological structure of the
spectrum (Karakida et al., 2019a,b).

B.1.5. Spectral Bias

B.1.5.1. Proof of Lemma 6.2.1. We consider parameter updates δwGD := −η∇wL for
gradient descent w.r.t a loss L := L(fw), which is a function of the vector fw ∈ Rnc of
sample output scores. We reformulate Lemma 6.2.1, extended to the multiclass setting.
Proposition B.1.2 (Lemma 6.2.1 restated). The gradient descent function updates in first
order Taylor approximation, δfGD(x)[y] := ⟨δwGD, Φw(x)[y]⟩, decompose as,

δfGD(x)[y] =
P∑

j=1
δfj uwj(x)[y], δfj = −ηλwj(u⊤

wj∇fwL) (B.1.25)
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where uwj are the eigenfunctions (B.1.10) of the tangent kernel and uwj ∈ Rnc are their
corresponding sample vector.

Proof. Inserting the resolution of unity IdP = ∑P
j=1 vwjv

⊤
wj in the expression for δfGD

yields

δfGD(x)[y] =
P∑

j=1
(v⊤

wjδwGD)v⊤
wjΦw(x)[y] (B.1.26)

=
P∑

j=1

√
λwj(v⊤

wjδwGD) uwj(x)[y] (B.1.27)

Next, by the chain rule ∇wL = Φw
⊤∇fwL, so we can spell out:

δwGD = −η
P∑

j=1

√
λwj(u⊤

wj∇fwL)vwj, (B.1.28)

which implies that (v⊤
wjδwGD) =

√
λwj(u⊤

wj∇fwL). Substituting in (B.1.26) gives the desired
result. □

The decomposition (B.1.25) has a sampled version in terms of tangent feature and kernel
matrices. Using the notation of SVD (B.1.23), let λ̂wJ , ûwj and v̂wj be correspond to the
(non-zero) eigenvalues and eigenvectors of the sample covariance and kernel (B.1.22). We
consider the tangent kernel principal components, defined as the functions

ûwJ(x)[y] = 1√
λwJ

⟨v̂wJ , Φw(x)[y]⟩, (B.1.29)

which form an orthonormal family for the in-sample scalar product ⟨f, g⟩in = ∑n
i=1 f(xi)g(xi)

and approximate the true kernel eigenfunctions (B.1.10) (e.g., Bengio et al., 2004; Braun,
2005). One can easily check from (B.1.23) that the vector ûwJ ∈ Rnc of sample outputs
û(xi)[y] coincides with the J-th eigenvector of the tangent kernel matrix.
Proposition B.1.3 (Sampled version of Prop B.1.2). The gradient descent function updates
in first order Taylor approximation, δfGD(x)[y] := ⟨δwGD, Φw(x)[y]⟩ decompose as,

δfGD(x)[y] =
nc∑

j=1
δfJ ûwJ(x)[y], δfJ = −ηλ̂wJ(û⊤

wJ∇fwL) (B.1.30)

in terms of the principal components (B.1.29) of the tangent kernel.

Proof. Same proof as for the previous Proposition, using the resolution of unity Idnc =∑nc
J=1 v̂wJ v̂

⊤
wJ . □

B.1.5.2. The Case of Linear Regression. The previous Proposition gives a ‘local’ ver-
sion of a classic decomposition of the training dynamics in linear regression (e.g., Advani &
Saxe, 2017)). In such a setting, fw = ⟨w, Φ(x)⟩ are linearly parametrized scalar functions
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(c = 1) and L = 1
2∥fw−y∥2. We denote by Φ = ∑n

j=1 λ̂jûjv̂
⊤
j the n×P feature matrix and

its SVD.
Proposition B.1.4. Gradient descent of the squared loss yields the function iterates,

fwt = fw∗ + (Id− ηK)t(fw0 − fw∗) (B.1.31)

where Id is the identity map and K is the operator acting on functions as (K ▷ f)(x) =∑n
i=1 k(x, xi)f(xi) in terms of the kernel k(x, x̃) = ⟨Φ(x), Φ(x̃)⟩.

Proof. The updates δwGD := −η∇wL induce the (exact) functional updates δfGD =fwt+1−
fwt given by

δfGD(x) = −η
n∑

i=1
k(x, xi)(fwt(xi)− yi) (B.1.32)

Substituting yi = fw∗(xi) gives fwt+1 − fw∗ = (id− ηK)(fwt − fw∗). Equ. B.1.31 follows by
induction. □

Lemma B.1.5. The kernel principal components ûj(x) = 1√
λ̂j

⟨v̂j, Φw(x)⟩ are eigenfunctions

of the operator K with corresponding eigenvalues λ̂j.

Proof. By inserting Idn = ∑
j v̂jv̂

⊤
j in the expression of the kernel, one can write k(x, xi) =∑n

j=1 ûj(x)ûj(xi). Subsituting in the definition of K and using the orthonormality of ûj for
the in-sample scalar product yield K ▷ ûj = λ̂jûj. □

Together with(B.1.31), this directly leads to the decoupling of the training dynamics in the
basis of kernel principal components.
Proposition B.1.6 (Spectral Bias for Linear Regression). By initializing w0 = Φ⊤α0 in
the span of the features, the function iterates in (B.1.31) uniquely decompose as,

fwt(x) =
n∑

j=1
fjtûj(x), fjt = f ∗

j + (1− ηλj)t (fj0 − f ∗
j ) (B.1.33)

where f ∗
j are the coefficients of the (mininum ℓ2-norm) interpolating solution.

This standard result shows how each independant mode labelled by j has its own linear
convergence rate For example setting η = 1/λ1, this gives fjt − f ∗

j ∝ e−t/τj , where τj =
− log(1 − λj

λ1
) is the time constant (number of iterations) for the mode j. Top modes f ∗

j of
the target function are learned faster than low modes.

In linearized regimes where deep learning reduces to kernel regression (Jacot et al., 2018;
Du et al., 2019b; Allen-Zhu et al., 2019), one can dwell further the nature of such a bias by
analyzing the eigenfunctions of the neural tangent kernel (e.g., Yang & Salman, 2019). As a
simple example, for a randomly initialized MLP on 1D uniform data, Fig. 2 shows the Fourier
decomposition of such eigenfunctions, ranked in nonincreasing order of the eigenvalues. We
observe that eigenfunctions with increasing index j (hence decreasing eigenvalues) correspond
to modes with increasing Fourier frequency, with a remarkable alignment with Fourier modes
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Figure 2. Eigendecomposition of the tangent kernel matrix of a random 6-layer deep 256-unit
wide MLP on 1D uniform data (50 equally spaced points in [0,1]). (left) Fourier decomposition
(y-axis for frequency, colorbar for magnitude) of each eigenvector (x-axis), ranked in nonincreasing
order of the eigenvalues. We observe that eigenvectors with increasing index j (hence decreasing
eigenvalues) correspond to modes with increasing Fourier frequency. (middle) Plot of the j-th
eigenvectors with j ∈ {0, 5, 20} and (right) distribution of eigenvalues. We note the fast decay (e.g
λ10/λ1 ≈ 4‰).

for the first half of the spectrum. This in line with observations (e.g., Rahaman et al., 2019)
that deep networks tend to prioritize learning low frequency modes during training.

B.2. Complexity Bounds
In this section, we spell out details and proofs for the content of Section 6.4.

B.2.1. Rademacher Complexity

Given a family G ⊂ RZ of real-valued functions on a probability space (Z, ρ), the empir-
ical Rademacher complexity of G with respect to a sample S = {z1, · · · zn} ∼ ρn is defined
as (Mohri et al., 2012):

R̂S(G) = Eσ∈{±1}n

[
sup
g∈G

1
n

n∑
i=1

σig(zi)
]

, (B.2.1)

where the expectation is over n i.i.d uniform random variables σ1, · · ·σn ∈ {±1}. For any
n ≥ 1, the Rademacher complexity with respect to samples of size n is then Rn(G) =
ES∼ρnR̂S(G).

B.2.2. Generalization Bounds

Generalization bounds based on Rademacher complexity are standard (Bartlett et al.,
2017; Mohri et al., 2012). We give here one instance of such a bound, relevant for classification
task.

Setup. We consider a family F of functions fw : X → Rc that output a score or proba-
bility fw(x)[y] for each class y ∈ {1 · · · c} (we take c = 1 for binary classification). The task
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is to find a predictor fw ∈ F with small expected classification error, which can be expressed
e.g. as

L0(fw)=P(x,y)∼ρ {µ(fw(x), y) < 0} (B.2.2)

where µ(f(x), y) denotes the margin,

µ(f(x), y) =

f(x)y binary case
f(x)[y]−maxy′ ̸=y f(x)[y′] multiclass case

(B.2.3)

Margin Bound. We consider the margin loss,

ℓγ(fw(x), y)) = ϕγ(µ(fw(x), y)) (B.2.4)

where γ > 0, and ϕγ is the ramp function: ϕγ(u) = 1 if u ≤ 0, ϕ(u) = 0 if u > γ and
ϕ(u) = 1−u/γ otherwise. We have the following bound for the expected error (B.2.2). With
probability at least 1− δ over the draw S = {zi = (xi, yi)}n

i=1 of size n, the following holds
for all fw ∈ F (Mohri et al., 2012, Theorems 4.4.and 8.1):

L0(fw) ≤ L̂γ(fw) + 2R̂S(ℓγ(F , ·)) + 3
√

log 2
δ

2n
(B.2.5)

where L̂γ(fw) = 1
n

∑n
i=1 ℓγ(fw(xi), yi) is the empirical margin error and ℓγ(F , ·) is the loss

class,
ℓγ(F , ·) = {(x, y) 7→ ℓγ(fw(x), y) | fw ∈ F} (B.2.6)

For binary classifiers, because ϕγ is 1/γ-Lipschitz, we have in addition

RS(ℓγ(F , ·)) ≤ 1
γ
RS(F) (B.2.7)

by Talagrand’s contraction lemma (Ledoux & Talagrand, 2013) (see e.g. Mohri et al., 2012,
lemma 4.2 for a detailed proof).

B.2.3. Complexity Bounds: Proofs

We first derive standard bounds for the linear classes of scalar functions,

FA
MA

= {fw : x 7→ ⟨w, Φ(x)⟩ | ∥w∥A ≤MA} (B.2.8)

Proposition B.2.1. The empirical Rademacher complexity of FA
MA

is bounded as,

R̂S(FA
MA

) ≤ (MA/n)
√

TrKA (B.2.9)

where (KA)ij = kA(xi, xj) is the kernel matrix associated to the rescaled features A−1Φ.
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Proof. We use the notation of Section 6.4. For given Rademacher variables σ ∈ {±1}n,
we have,

sup
f∈FA

MA

n∑
i=1

σif(xi) = sup
∥w∥A≤MA

n∑
i=1

σi⟨w, Φ(xi)⟩

= sup
∥A⊤w∥2≤MA

n∑
i=1

σi⟨A⊤w, A−1Φ(xi)⟩

= sup
∥w̃∥2≤MA

⟨w̃,
n∑

i=1
σiA

−1Φ(xi)⟩

= MA

∥∥∥∥∥
n∑

i=1
σiA

−1Φ(xi)
∥∥∥∥∥

2

= MA

√
σ⊤KAσ (B.2.10)

From (B.2.10) and the definition (6.4.1) we obtain:

R̂S(FA
MA

) = MA

n
Eσ

[√
σ⊤KAσ

]
≤ MA

n

√
Eσ [σ⊤KAσ]

≤ MA

n

√
TrKA (B.2.11)

where we used Jensen’s inequality to pass Eσ under the root, and that E[σi] = 0 and σ2
i = 1

for all i. □

We now extend the result to the families (6.4.4) of learning flows:

FA
m = {fw : x 7→ ∑

t⟨δwt, Φ(x)⟩ | ∥δwt∥At ≤ mt} (B.2.12)

Theorem B.2.2 (Theorem 6.4.1 restated). The empirical Rademacher complexity of FA
m is

bounded as,
R̂S(FA

m) ≤ ∑t(mt/n)
√

TrKAt (B.2.13)

where (KAt)ij = kAt(xi, xj) is the kernel matrix associated to the rescaled features A−1
t Φ.

Proof. This is simple extension of the previous proof:

sup
f∈FA

m

n∑
i=1

σif(xi) = sup
∥δwt∥At ≤mt

n∑
i=1

σi

∑
t

⟨δwt, Φ(xi)⟩

=
∑

t

sup
∥δ̃wt∥2≤mt

⟨δ̃wt,
n∑

i=1
σiA

−1
t Φ(xi)⟩

=
∑

t

mt

√
σ⊤KAtσ (B.2.14)

and we conclude as in (B.2.11). □
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Finally, we note that the same result can be formulated in terms of an evolving feature
map Φt = A−1

t Φ with kernel kt(x, x̃) = ⟨Φt(x), Φt(x̃)⟩ In fact by reparametrization invari-
ance, the function updates can also be written as δfwt(x) = ⟨δ̃wt, Φt(x)⟩ where δ̃wt = A⊤

t δwt.
The function class (6.4.4) can equivalently be written as FA

m = FΦ
m where Φ denotes a fixed

sequence of feature maps, Φ = {Φt}t and

FΦ
m = {fw : x 7→ ∑

t⟨δ̃wt, Φt(x)⟩ | ∥δ̃wt∥2 ≤ mt} (B.2.15)

In this formulation, the result (B.2.13) is expressed as,

R̂S(FΦ
m) ≤ ∑t(mt/n)

√
TrKt (B.2.16)

where (Kt)ij = kt(xi, x̃j) is the kernel matrix associated to the feature map Φt.

B.2.4. Bounds for Multiclass Classification

The generalization bound (B.2.5) is based on the margin loss class (B.2.6). In this
section, we show how to bound R̂S(ℓγ(F , ·)) in terms of tangent kernels for the original
class F of functions fw : X → Rc instead. Although the proof is adapted from standard
techniques, to our knowledge Lemma B.2.3 and Theorem B.2.1 below are new results. In
what follows, we denote by µF the margin class,

µF = {(x, y)→ µ(fw(x), y) | fw ∈ F} (B.2.17)

where µ(fw(x), y)) is the margin (B.2.3). We also define, for each y ∈ {1 · · · c},

Fy = {x 7→ fw(x)[y] | fw ∈ F}, µF ,y = {x 7→ µ(fw(x), y) | fw ∈ F} (B.2.18)

Lemma B.2.3. The following inequality holds:

R̂S(ℓγ(F , ·)) ≤ c

γ

c∑
y=1
R̂S(Fy) (B.2.19)

Proof. We first follow the first steps of the proof of (Mohri et al., 2012, Theorem 8.1) to
show that

R̂S(ℓγ(F , ·)) ≤ 1
γ

c∑
y=1
R̂S(µF ,y) (B.2.20)

We reproduce these steps here for completeness: first, it follows from the 1/γ-Lipschitzness
of the ramp loss ϕγ in (B.2.4) and Talagrand’s contraction lemma (Mohri et al., 2012, lemma
4.2) that

R̂S(ℓγ(F , ·)) ≤ 1
γ
R̂S(µF) (B.2.21)
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Next, we write

R̂S(µF) := 1
n
Eσ

[
sup

fw∈F

n∑
i=1

σiµ(fw(xi), yi)
]

= 1
n
Eσ

 sup
fw∈F

n∑
i=1

σi

c∑
y=1

µ(fw(xi), y) δy,yi


= 1

n

c∑
y=1

Eσ

[
sup

fw∈F

n∑
i=1

σiµ(fw(xi), y) δy,yi

]
(B.2.22)

where δy,yi
= 1 if y = yi and 0 otherwise; the second inequality follows from the sub-additivity

of sup. Substituting δy,yi
= 1

2(ϵi + 1
2) where ϵi = 2δy,yi

− 1 ∈ {±1}, we obtain

R̂S(µF) ≤ 1
2n

c∑
y=1

Eσ

[
sup

fw∈F

n∑
i=1

(ϵiσi)µ(fw(xi), y)
]

+ 1
2n

c∑
y=1

Eσ

[
sup

fw∈F

n∑
i=1

σiµ(fw(xi), y)
]

=
c∑

y=1

1
n
Eσ

[
sup

fw∈F

n∑
i=1

σiµ(fw(xi), y)
]

=
c∑

y=1
R̂S(µF ,y) (B.2.23)

Together with (B.2.21), this leads to (B.2.20).
Now, spelling out µ(fw(xi, y)) gives

R̂S(µF ,y) = 1
n
Eσ

[
sup

fw∈F

n∑
i=1

σi(fw(xi)[y]−max
y′ ̸=y

fw(xi)[y′])
]

= R̂S(Fy) + 1
n
Eσ

[
sup

fw∈F

n∑
i=1

(−σi) max
y′ ̸=y

fw(xi)[y′]
]

= R̂S(Fy) + 1
n
Eσ

[
sup

fw∈F

n∑
i=1

σi max
y′ ̸=y

fw(xi)[y′]
]

≤ R̂S(Fy) + R̂S(Gy) (B.2.24)

where Gy = {max{fy′ : y′ ̸= y} | fy′ ∈ Fy′}. Now (Mohri et al., 2012, lemma 8.1) show that
R̂S(Gy) ≤ ∑y′ ̸=y R̂S(Fy′). This leads to

c∑
y=1
R̂S(µF ,y) ≤

c∑
y=1
R̂S(Fy) +

c∑
y=1

c∑
y′=1
y′ ̸=y

R̂S(Fy′)

=
c∑

y=1
R̂S(Fy) + (c− 1)

c∑
y=1
R̂S(Fy)

= c
c∑

y=1
R̂S(Fy) (B.2.25)

Substituting in (B.2.20) finishes the proof. □
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In the linear case, this results leads to analogous theorems as in B.2.3 in the multiclass
setting. For example, considering the linear families of functions X → Rc,

FA
MA

= {x 7→ fw(x)[y] := ⟨w, Φ(x)[y]⟩ | ∥w∥A ≤MA} (B.2.26)

where (x, y) 7→ Φ(x)[y] is some joint feature map, we have the following
Theorem B.2.4. The emp. Rademacher complexity of the margin loss class ℓγ(FA

MA
, ·) is

bounded as,
R̂S(ℓγ(FA

MA
, ·)) ≤ (c3/2MA/γn)

√
TrKA (B.2.27)

where (KA)yy′

ij is the kernel nc× nc matrix associated to the rescaled features A−1Φ(x)[y].

Proof. Eq.B.2.19, and Theorem B.2.1 applied to each linear family Fy of (scalar) functions
leads to

R̂S(ℓγ(FA
MA

, ·)) ≤ c

γ

c∑
y=1

MA

n

√
TrKyy

A (B.2.28)

where TrKyy
A := ∑n

i=1(KA)yy
ii is computed w.r.t to the indices i = 1,...,n for fixed y. Passing

the average 1
c

∑c
y=1 under the root using Jensen inequality, we conclude:

R̂S(ℓγ(FA
MA

, ·)) ≤ c2MA

γn

√√√√1
c

c∑
y=1

TrKyy
A

= c3/2MA

γn

√
TrKA (B.2.29)

□

The proof of the extension of these bounds to families learning flows follows the same line
as in B.2.3.

B.2.5. Which Norm for Measuring Capacity?

Implicit biases of gradient descent are relatively well understood in linear models (e.g
Gunasekar et al. (2018)). For example when using square loss, it is well-known that gradient
descent (initialized in the span of the data) converges to minimum ℓ2 norm (resp. RKHS
norm) solutions in parameter space (resp. function space). Yet, as pointed out by Belkin
et al. (2018); Muthukumar et al. (2020), measuring capacity in terms of such norms is not
coherently linked with generalization in practice. Here we discuss this issue by highlighting
the critical dependence of meaningful norm-based capacity on the geometry defined by the
features. We use the notation of Section 6.4.1: Φ = ∑n

j=1

√
λjujv

⊤
j denote the n×P feature

matrix and its SVD decomposition.
A standard approach is to measure capacity in terms of the ℓ2 norm the weight vector,

e.g using bounds (6.4.3) with A = Id. If the distribution of solutions w∗
S , where S ∼ ρn

is sampled from the input distribution, is reasonably isotropic, taking the smallest ℓ2 ball
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Figure 3. Left: 2D projection of the minimum ℓ2-norm interpolators w∗
S , S ∼ ρn, for linear

models fw = ⟨w, Φc⟩, as the feature scaling factor varies from 0 (white features) to 1 (original,
anisotropic features). For larger c, the solutions scatter in a very anisotropic way. Right: Average
test classification loss and complexity bounds (B.2.27) with A = Id (blue plot) for the solution
vectors w∗

S , as we increase the scaling factor c. As feature anisotropy increases, the bound becomes
increasingly loose and fails to reflect the shape of the test error. By contrast, the bound (6.4.3)
with A optimized as in Proposition B.2.5 (red plot) does not suffer from this problem.

containing them (with high probability) gives an accurate description of the class of trained
models. However for very anisotropic distributions, the solutions do not fill any such ball so
describing trained models in terms of ℓ2 balls is wasteful (Schölkopf et al., 1999a).

Now, for minimum ℓ2 norm interpolators (Hastie et al., 2009),

w∗ =Φ⊤K−1y =
n∑

j=1

u⊤
j y√
λj

vj, (B.2.30)

where K = ΦΦ⊤ is the kernel matrix, the solution distribution typically inherits the
anisotropy of the features. For example, if yi = ȳ(xi) + εi where εi ∼ N (0, σ2), the co-
variance of the solutions with respect to noise is covε[w∗, w∗] = ∑

j
σ2

λj
vjv

⊤
j , which scales as

1/λj along vj.
To visualize this on a simple setting, we consider P random features of a RBF kernel1,

fit on 1D data x modelled by N equally spaced points in [−a, a]. In this setting, the (true)
feature map is represented by a N × P matrix with SVD Φ = ∑

j

√
ljψjφ

⊤
j . We assume the

(true) labels are defined by the deterministic function y(x) = sign(ψ1(x)). To highlight the
effect of feature anisotropy, we further rescale the singular values as lc

j = 1 + c(lj − 1) so
as to interpolate between whitened features (c = 0) and the original ones (c = 1). We set
P = N = 1000. Fig 3 (left) shows 2D projections in the plane (φ1,φ10) of the (centered)
minimum ℓ2 norm solutions w∗

S − ESw∗
S , for a pool of 100 training (sub)samples S of size

n = 50, for increasing values of the scaling factor c. As c approaches 1, the solutions begin

1We used RBFsampler of scikit-learn, which implements a variant of Random Kitchen Sinks (Rahimi &
Recht, 2007) to approximate the feature map of a RBF kernel with parameter γ = 1.
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to scatter in a very anisotropic way in parameter space; as shown in Fig 3 (right), the
complexity bound (B.2.9) based on the ℓ2 norm, i.e A = Id (blue plot), becomes increasingly
loose and fails to reflect the shape of the test error.

To find a more meaningful capacity measure, Prop B.2.1 suggests optimizing the bound
(6.4.3) with MA = ∥w∗∥A, over a given class of rescaling matrices A. We give an example of
this in the following Proposition.
Proposition B.2.5. Consider the class of matrices Aν = ∑n

j=1
√

νjvjv
⊤
j + Idspan{v}⊥, which

act as mere rescaling of the singular values of the feature matrix. Any minimizer of the upper
bound (B.2.9) for the mininum ℓ2-norm interpolator takes the form

ν∗
j = κ

√
λj

|v⊤
j w∗|

= κ
λj

|u⊤
j y|

(B.2.31)

where κ > 0 is a constant independent of j.

Proof. From (B.2.30) and the definition of Aν , we first write

∥w∗∥2
Aν

=
n∑

j=1

νj

λj

(u⊤
j y)2, TrKAν =

n∑
j=1

λj

νj

(B.2.32)

The product of the above two terms has the critical points ν∗
j , j = 1 · · ·n which satisfy

(u⊤
j y)2

λj

TrKAν −
λj

ν∗2
j

∥w∗∥2
Aν

= 0 (B.2.33)

giving the desired result ν∗
j ∝ λj/|u⊤

j y|. □

In the context of Proposition B.2.5, we see that the optimal norm ∥ · ∥Aν∗ depends both on
the feature geometry – through the singular values – and on the task – through the labels –.
As shown in Fig 1 (right, red plot), in the above RBF feature setting, the resulting optimal
bound on the Radecher complexity has a much nicer behaviour than the standard bound
based on the ℓ2 norm.2

B.2.6. SuperNat: Proof of Prop 6.4.2

Prop. 6.4.2 is a local version of Prop B.2.5, where the feature rescaling factors are applied
at each step of the training algorithm. The procedure is described in Fig 5 (left); the term to
be optimized shows up in Step 2. With the chosen class of matrices described in Prop 6.4.2,
the action Φt → A−1

ν Φt merely rescale its singular values λjt → λjt/νj, leaving its singular
vectors uj,vj unchanged.

2Note however that, since the optimal norm depends on the sample set S, the resulting complexity bound
does not directly yield a high probability bound on the generalization error as in (B.2.5). The more thorough
analysis, which requires promoting (B.2.5) to uniform bounds over the choice of matrix A, is left for future
work.
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Proposition B.2.6 (Prop 6.4.2 restated). For the class of rescaling matrices Aν defined in
Prop B.2.5, any minimizer in Step 2 in Fig 5, where δwGD = −η∇wL, takes the form

ν∗
jt = κ

1
|u⊤

j∇fwL|
(B.2.34)

where κ > 0 is a constant independent of j.

Proof. Using the chain rule and the SVD of the feature map Φt we write the gradient
descent updates at iteration t of SuperNat as

δwGD = −ηΦ⊤
t ∇fwL (B.2.35)

= −η
n∑

j=1

√
λjt(u⊤

j∇fwL)vj, (B.2.36)

From the definition of Aν , we then spell out

∥δwGD∥2
Aν

= η2
n∑

j=1
(νjλj)(u⊤

j∇fwL)2, ∥A−1
ν Φt∥F := TrKtAν =

n∑
j=1

λj

νj

(B.2.37)

The product of the above two terms has the critical points ν∗
j , j = 1 · · ·n which satisfy

λj(u⊤
j∇fwL)2TrKAν −

λj

ν∗2
j

∥δwGD∥2
Aν

= 0 (B.2.38)

giving the desired result ν∗
j ∝ 1/|u⊤

j∇fwL|. □

B.3. Additional experiments
B.3.1. Synthetic Experiment: Fig. 1

To visualize the adaptation of the tangent kernel to the task during training, we perform
the following synthetic experiment. We train a 6-layer deep 256-unit wide MLP on n = 500
points of the Disc dataset (x, y) where x ∼ Unif[−1,1]2 and y(x) = ±1 depending on whether
is within the disk of center 0 and radius

√
2/π, see Fig 4. Fig. 1 in the main text shows

visualizations of eigenfunctions sampled using a grid of N = 2500 points on the square, and
ranked in non-increasing order of the spectrum λ1 ≥ · · · ≥ λN . After a number of iterations,
we begin to see the class structure (e.g. boundary circle) emerge in the top eigenfunctions.
We note also an increasingly fast spectrum decay (e.g λ20/λ1 = 1.5% at iteration 0 and
0.2% at iteration 2000). The interpretation is that the kernel stretches in directions of high
correlation with the labels.

B.3.2. More Alignment Plots

Varying datasets and architectures: Fig 5.
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Figure 4. Disk dataset. Left: Training set of n = 500 points (xi, yi) where x ∼ Unif[−1,1]2,
yi = 1 if ∥xi∥2 ≤ r =

√
2/π and −1 otherwise. Right: Large test sample (2500 points forming a

50× 50 grid) used to evaluate the tangent kernel.
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Figure 5. Evolution of the CKA between the tangent kernel and the class label kernel KY = Y Y T

measured on a held-out test set for different architectures: (left) 6 layers of 80 hidden units MLP
on MNIST (middle) VGG19 on CIFAR10 (right) Resnet18 on CIFAR10. We observe an increase
of the alignment to the target function.

Uncentered kernel Experiments: Fig 6. The evolution of the alignment to the
uncentered kernel, in order to assess whether this effect is consistent when removing centering.
The experimental details are the same as in the main text; we also observe a similar increase
of the alignment as training progresses.

B.3.3. Effect of depth on alignment

In order to study the influence of the architecture on the alignment effect, we measure the
CKA for different networks and different initialization as we increase the depth. The results
in Fig 7 suggest that the alignment effect is magnified as depth increases. We also observe
that the ratio of the maximum alignment between easy and difficult examples is increased
with depth, but stays high for a smaller number of iterations.

B.3.4. Spectrum Plots with lower learning rate : Fig. 8
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Figure 6. Same as figure 5 but without centering the kernel. Evolution of the uncentered kernel
alignment between the tangent kernel and the class label kernel KY = Y Y T measured on a held-out
test set for different architectures: (left) 6 layers of 80 hidden units MLP on MNIST (middle)
VGG19 on CIFAR10 (right) Resnet18 on CIFAR10. We observe an increase of the alignment to
the target function.
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Figure 7. Effect of depth on alignment. 10.000 MNIST examples with 1000 random labels
MNIST examples trained with learning rate=0.01, momentum=0.9 and batch size=100 for MLP
with hidden layers size 60 and (in rows) varying depths (in columns) varying random initial-
ization/minibatch sampling. As we increase the depth, the alignment starts increasing later in
training and increases faster; and the ratio between easy and difficult alignments reaches a higher
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Appendix C

Lazy vs hasty:
linearization in deep networks impacts

learning schedule based on example difficulty
Supplementary material

C.1. Details on the theoretical analysis
We provide some technical details for the statements and proposition of Section 5.4.

C.1.1. Gradient dynamics

We first derive the equations (5.4.4). Using twice the chain rule yields

θ̇ =
d∑

λ=1
ẇλ∇wλ

θ = −
d∑

λ=1
∇wλ

ℓ(θ)∇wλ
θ = −

d∑
λ=1

(
∇wλ

θ⊤∇θℓ(θ)
)
∇wλ

θ (C.1.1)

By (5.4.2), we have ∇wλ
θ = wλvλ; moreover

∇θℓ(θ) = Σθ −X⊤y = Σ(θ(t)− θ∗) (C.1.2)

where Σ = X⊤X is the input correlation matrix and θ∗ := Σ+X⊤y+P⊥(θ0) is the solution
of the linear dynamics. Substituting into (C.1.1)gives,

θ̇(t) = −
d∑

λ=1
w2

λ (t)vλv
⊤
λ Σ(θ(t)− θ∗) := −Σ(t)(θ(t)− θ∗) (C.1.3)

Since Σ is diagonal in the basis vλ, Σ(t) is obtained from Σ by rescaling each of its eigenvalues
µλ by the time varying factor w2

λ = 2θλ.



C.1.2. Proof of Proposition 5.4.1

The system (C.1.3) is diagonal in the basis vλ, so the dynamics decouples for the param-
eter components θλ in this basis. In fact we have,

θ =
d∑

λ=1
θλvλ, θ̇λ = −2µλθλ(θλ − θ∗

λ ) (C.1.4)

The above equations can be put in the form

θ̇λ

θλ(θλ − θ∗
λ ) = −2µλ (C.1.5)

We distinguish two cases (note that it follows from our assumptions that θ∗
λ ≥ 0 for all λ):

Case 1: θ∗
λ = 0. In this case, (C.1.5) becomes

d

dt

[
− 1

θλ

]
= −2µλ ⇒ 1

θλ(t) = 2µλt + c (C.1.6)

where the constant c is fixed by the initial condition θλ(0) = θ0
λ to be c = 1/θ0

λ . Thus,

θλ(t) = θ0
λ

1 + 2µλθ0
λ t

(C.1.7)

Case 2: θ∗
λ > 0. We also focus on the case where 0 < θ0

λ < θ∗
λ ; it can be checked (e.g. by

a post hoc inspection on the solution) that this implies 0 < θλ < θ∗
λ for all t. In this case,

(C.1.5) can be written as
1
θ∗
λ

(
−θ̇λ

θ∗
λ − θλ

− θ̇λ

θλ

)
= −2µλ (C.1.8)

and hence
d

dt
[log(θ∗

λ − θλ)− log(θλ)] = −2µλθ∗
λ ⇒ θ∗

λ − θλ

θλ

= ce−2µλθ∗
λ t (C.1.9)

where the constant c > 0 is fixed by the initial condition to be c = θ∗
λ −θ0

λ

θ0
λ

. Solving for θλ

finally gives
θλ(t) = θ0

λ θ∗
λ

θ0
λ − e−2ỹλt(θ0

λ − θ∗
λ ) (C.1.10)

where we substituted ỹλ := √µλyλ = µλθ∗
λ. The case where 0 < θ∗

λ < θ0
λ is similar and yields

the same expression.

C.2. Code
Code for reproducing the experiments is available at: https://github.com/tfjgeorge/

lazy_vs_hasty.
In the linearization_utils.py file there are 2 new contributed classes extensively used

in the project:
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• LinearizationProbe implements the linearization metrics (end of section 5.2): sign
similarity, NTK alignment using NNGeometry (George, 2021) and representation
kernel alignment;
• ModelLinearKnob implements prediction of a model parameterized by the α scaling

(section 5.2).

C.3. Experimental details
Unless specified otherwise, all model parameters are initialized using the default Pytorch

initialization.

C.3.1. CIFAR10 with C-scores

We train a ResNet18 with SGD with learning rate 0.01, momentum 0.9 and bach size 125.
In order to use pre-computed C-scores even for a held-out test set, we split the CIFAR10
dataset into 40 000 train examples and 10 000 test examples.

C.3.2. CIFAR10 with noisy examples

We train a ResNet18 with SGD with learning rate 0.01, momentum 0.9 and bach size
125.

C.4. A note on batch norm and α scaling
We chose to refrain from using batch norm in our experiments since it adds unneces-

sary complexity for analysis, and deep models without batch norm already show intriguing
generalization properties that are not fully understood by current theory. Note that most
theoretical advances currently focus on models that do not use batch norm.

In addition, the α scaling (section 5.2) is not well defined in the presence of batch norm
in training mode. Indeed, in training mode, batch norm works by evaluating the mean and
variance using examples of the current mini-batch. When computing α (fθ (x)− fθ0 (x)) for
large α, a slight change in parameters is boosted by α to produce a large change in function
space. This is expected, and this is balanced by tiny values of the learning rate (shrinked
by 1

α2 ). But small changes in mean and variance are also boosted, and this is probably not
expected. For this reason, we chose to limit the scope of the current paper to models without
batch norm.

As an exception, in the Waterbirds experiment of section 5.3.3, we used a pre-trained
ResNet18 network, that includes batch norm layers. We chose to fine-tune in evaluation
mode, where the mean and variance are not computed using examples of the mini-batch,
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Figure 1. same as fig. 2, with α = 1 and varying learning rates in {0.01,0.003,10−4,10−6}. In this
experiment, we rule out the role of the learning rate in learning speed of easy/difficult examples,
since regardless of the learning rate, all runs follow the same trajectory as measured by noisy
examples accuracy during training, and test examples accuracy during training. This shows that
modulating the learning rate plays a different role as the α scaling.

but are instead constant, kept at their pre-trained values. This way, all other parameters
(including batch norm’s γ and β) are "standard" parameters that can be linearized.

C.5. Interplay between learning rate and α scaling
It has been observed in (Li et al., 2019) that the initial learning rate used during training

plays an important role in the final outcome, in that models trained with large initial learning
rate usually get better generalization on a test set. In order to rule out the role of the
learning rate in our easy/difficult examples setup, we compared models trained with α = 1
and varying learning rate in a broad range (4 orders of magnitude).

Fig. 1 shows our result on the noisy vs clean examples experiment (similar to fig. 2 in
the main body). Our plots are also normalized by clean example loss, even if runs with small
learning rate require many more training iterations to attain a similar progress (measured in
e.g. training loss). We observe that even if using a smaller learning rate keeps the training
dynamics in a more linearized regime (on the right), it is still less linearized than our runs
scaled by α: compare the lr = 10−6 to the α = 100 run e.g., since both use the same learning
rate once rescaled by α, but the linearity metrics stay close to 1 in the α scaled run, whereas
even with this tiny learning rate, the lr = 10−6 run in 1 is in a slightly non-linear regime
as the linearity metrics drop to 0.9. When looking at fig. 1 left, we also see that both
the training accuracy on noisy examples, and the test accuracy seem to follow the same
trajectory regardless of the learning rate, at least in the first part of training, whereas in fig.
2, modulating the value of α causes the trajectories to diverge.
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C.6. Additional experiments
In order to verify that our findings also hold true on other architectures, we reproduce

the CIFAR10 experiments that use a ResNet18 network, with a VGG11 network. Fig. 4
presents results on the C-scores experiment, and figure 3 presents results on the noisy example
experiment.

In fig. 2, fig. 7 and fig. 8, we vary the network initial parameters and SGD minibatch in
order to check for variability, and in order to verify that our results are not cherry-picked.

In fig. 6, we also include the accuracy plots corresponding to the experiments in sections
5.3.2.2 and 5.3.2.1 and presented in fig. 2. In fig. 5, we plot the difference between non-linear
and linear loss for the same experiments.

C.7. Numerical simulations of the analytical setup
An interesting question is whether our simplified parameterization of section 5.4 repro-

duces the same qualitative behaviour than vanilla 2-layer networks for the studied settings.
In the experiments in fig. 9, we train a 2-layer MLP on the datasets of examples 1, 2 and 3.
We do not impose any constraint on the parameters, which are dense weight matrices. We
observe similar trends as in fig. 4.
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Figure 2. same as fig. 2, varying seed (model initialization and mini-batch order)
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Figure 3. same as fig. 2, with a VGG11 network instead
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Figure 4. same as fig. 2, with a VGG11 network instead
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Figure 5. same as fig. 2, but we instead plot the differences between non-linear and linear regimes
of the loss computed on groups of examples ranked by C-Score. Similarly to figure 2, we observe
that at equal training loss (on the x-axis), the loss on high C-score examples is lower for the non-
linear regime, and conversely for low C-score examples.
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Figure 6. Accuracy plots for the experiments of fig. 2. We observe similar trends by looking
at the accuracy: (left) the non-linear run starts memorizing noisy (difficult) examples later in
training than the linear run (solid curve), while simultaneously the test accuracy reaches a higher
value for the non-linear run. (right) Lower C-score examples are learned comparatively faster in
the linear regime, whereas learning curves are more spread in the non-linear regime which indicates
a comparatively higher hierarchy between learning groups of examples ranked by their C-score.
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Figure 7. same as fig 3 with varying seed (model initialization and minibatch order)
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Figure 8. same as fig 3 with varying seed (model initialization and minibatch order)
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Figure 9. (left) On the same datasets as in fig. 4, we train a 2-layer MLP with no additional
constraint on the parameterization. Per-group training curves look very similar to the ones ob-
tained in fig. 4, and in particular the learning rank between easy and difficult groups of examples
is magnified compared to the linear model of section 5.4. This validates that our analytical model
captures the qualitative behaviour highlighted in this work, even though we use a simplified pa-
rameterization so as to get closed-form expressions for the training curves.
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