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Deep networks

Figure: "A PhD student defending
his thesis in the style of Gustav
Klimt" generated by DALL·E

A range of applications
▶ Text-to-image generation

DALL·E, Midjourney

▶ Language models
ChatGPT

▶ Automation
Self-driving cars, agriculture, industrial tools,
medical tools, text translation...

▶ Science
Prediction of protein folding structure

▶ Image classification
first empirical success of deep learning, simple
enough (easy training), yet exhibits interesting and
unexplained properties

Parametric models

y = fw (x)

▶ Inspired by the structure of brains: a network of many simple computational units
▶ Learning: find correct values for parameters w = synapses weights
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Learning with deep networks

Empirical risk minimization
Training dataset of examples D, loss function ℓ

ftrained = arg min
w

L (w, ℓ,D)

▶ Generalization to unseen examples
▶ Underspecification
▶ Analysis tools
▶ Qualitative and quantitative theoretical principles

Outline

Methodology and tools

1. NNGeometry (PyTorch Ecosystem Day 2021)

Train fast

2. EKFAC (NeurIPS 2018)

Insights into generalization properties

3. Lazy vs Hasty (TMLR 2022)

4. NTK Alignment (AISTATS 2021)
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Proposed model

Outcome predictor ftrained is the result of an iterative algorithm:

fwT = fw0 +

T−1∑
t=0

fwt+δwt − fwt︸ ︷︷ ︸
:=δft
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Figure: Effect on fw of perturbations δw = ϵvj on a partially trained VGG19 network on
CIFAR10. (left) Top directions (right) directions are chosen at random.

⇒ Parameter space to function space mapping is very ill-conditioned
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Proposed model: linearization

Locally to each iteration, linearize using
1st order Taylor expansion:

δft (x) ≈ ⟨∇wfwt (x) , δwt⟩

Tangent Features Fisher Information Matrix Neural Tangent Kernel
(Jacot et al., 2018)

ϕwt (x) := ∇wfwt (x) Fw = Ex

[
ϕw (x)ϕw (x)⊤

]
kw (x, x′) = ⟨ϕw (x) , ϕw (x′)⟩

Φw =


ϕw (x1)

⊤

...
ϕw (xn)

⊤

 Fw = 1
n
Φ⊤

wΦw Kw = ΦwΦ⊤
w

(n× d) (d× d) (n× n)

For a set of n examples, and a network with d parameters
n ∼ 104 − 1010 d ∼ 107 − 1014
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Linearization toolbox: NNGeometry (George, 2021)

A PyTorch library for computing tangent features, FIMs, NTKs.

Example: compute a vector-Fisher-vector product v⊤Fv:

▶ implicit operations
▶ approximate objects

KFAC (Martens and Grosse, 2015), EKFAC
(George et al., 2018), Quasi-diagonal (Ollivier,
2015), ...

github.com/tfjgeorge/nngeometry
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Fast Approximate Natural Gradient Descent
in a Kronecker-factored Eigenbasis

NeurIPS 2018

TG*, César Laurent*, Xavier Bouthillier, Nicolas Ballas, Pascal Vincent
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Motivation
Train fast
▶ Ill-conditioning
▶ Millions of parameters to be optimized

cure can be worse than disease (e.g. large improvement but slow iterations)

Usual (Euclidean) gradient descent
Iterate steps in steepest* descent direction
* as measured by the Euclidean norm ∥dw∥2= ⟨dw, dw⟩

wt+1 ← wt − η∇L̂

Natural gradient descent (Amari, 1998)
Iterate steps in steepest* descent direction
* as measured by the Fisher norm ∥dw∥2

Fw
= ⟨dw, Fwdw⟩

wt+1 ← wt − ηF−1
w ∇L̂

▶ mitigates ill-conditioning of the tangent features
▶ closely resembles Newton’s method

but...
▶ Fw is a d× d matrix, d ∼ 107 − 1014

▶ memory cost O
(
d2

)
, computational cost O

(
d3

)
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Fisher Information Matrix: structure

Figure: Fisher Information Matrix of a small depth-4 convolutional network on MNIST

Dense matrix ⇒ Block diagonal matrix
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Fisher Information Matrix: KFAC (Martens and Grosse, 2015)

For a linear layer...
g = W

(k×m)
a

we have

Flayer =
1

|D|
∑
x∈D

aa⊤ ⊗∇g∇⊤
g

Flayer ≈
1

|D|
∑
x∈D

aa⊤︸ ︷︷ ︸
:=A (m×m)

⊗ 1

|D|
∑
x∈D
∇g∇⊤

g︸ ︷︷ ︸
:=G (k×k)

(Martens and Grosse, 2015)

Property of Kronecker products:

(A⊗G)−1

(mk×mk)

= A−1

(m×m)
⊗ G−1

(k×k)

Cost goes from O
(
(mk)3

)
to O

(
m3

)
+O

(
k3

)
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Fisher Information Matrix: structure

Figure: Fisher Information Matrix of a small depth-4 convolutional network on MNIST

Block diagonal matrix ⇒ KFAC matrix
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Kronecker-factored eigenbasis
FKFAC = A⊗G

SVD of A and G:

A = UAΛAU⊤
A G = UGΛGU⊤

G

FKFAC = (UA ⊗ UG)︸ ︷︷ ︸
:=UKFE

(ΛA ⊗ ΛG) (UA ⊗ UG)⊤

▶ A cheap basis that (approx.) diagonalizes Flayer

▶ The exact diagonal in the KFE costs O ((m+ k) |D|))

S = vec

 1

|D|
∑
x∈D

(
U⊤
A a

(
U⊤
G∇y

)⊤
)2



- Fisher 
- Diagonal 
- K-FAC 
- EKFAC

Eigenspectrum of 
approximations

Theorem
S is the optimal diagonal scaling in the KFE
(in the sense of the Frobenius norm)

Corollary
EKFAC better approximates the FIM than KFAC
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Fisher Information Matrix: structure

Figure: Fisher Information Matrix of a small depth-4 convolutional network on MNIST

Dense matrix ⇒ Same matrix projected in KFE
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Fisher Information Matrix: structure

Figure: Fisher Information Matrix of a small depth-4 convolutional network on MNIST

Block diagonal matrix ⇒ EKFAC matrix
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Training curves

Algorithm and implementation
▶ (amortized every T iterations) re-evaluate the KFE
▶ (at every iteration)

1. project everything in the KFE
2. perform a diagonal method in the KFE
3. project back in parameter space (=update)

Figure: Training curves of a Resnet34 on CIFAR10 using different optimizers
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EKFAC summary

▶ Approximate of the Fisher Information Matrix
▶ Optimization
▶ Pruning (Wang et al., 2019)
▶ Continual learning (Liu et al., 2018)

▶ Accelerates training (per iteration/per wall-clock time)
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Lazy vs hasty: linearization in deep networks impacts learning
schedule based on example difficulty

TMLR 2022

TG, Guillaume Lajoie, Aristide Baratin
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Motivation

Generalization properties of ftrained

▶ Compare linear (lazy) regime (with fixed tangent features ϕw0 ) to full regime
model for which we have theoretical results, vs full training trajectory

▶ Which examples are used to learn?
Typical examples vs corner cases

Outline
1. Empirical results with different ways of measuring example difficulty

2. Analytical insights on a simplified tractable model

Setup
Use scalar coefficient α to modulate non-linearity (Chizat et al., 2019)

fα,w = α (fw − fw0 ) and learning rate ηα = η
α2

▶ α≫ 1 : linearized regime
▶ α = 1 : standard regime
▶ α < 1 : "super adaptive" regime

Monitor "non-linearity": NTK alignment, Repr. kernel alignment, sign similarity
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Impact of training regime: a 2d toy dataset

Figure: Yinyang dataset, 100 linear runs, 100
non-linear runs, 4 layers MLP
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▶ (red) linear is better
▶ (blue) non-linear is better

⇒ Non-linear is better at learning larger areas of the same class
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Impact of training regime: examples grouped by C-scores

C-score (Jiang et al., 2021)

CD,n (x, y) = E
D

n∼D\{(x,y)} [P (ftrained (x;D) = y)] ,

Likeliness that example x is correctly classified if it were not included in the training set
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Figure: ResNet18 on CIFAR10. The training loss is monitored separately on groups of
examples ranked by their C-scores.

⇒ Non-linear learns examples with high C-score faster
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Impact of training regime: corrupted examples

Noisy labels
Part of the training examples are assigned a wrong label
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Figure: ResNet18 on CIFAR10. The training loss is monitored separately on clean and noisy
examples.

⇒ Non-linear spends greater part ignoring noisy examples
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Impact of training regime: spurious features

Spurious feature
A feature that is uninformative on the
task, but easier to learn
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Figure: ResNet18 on Waterbirds. The training accuracy is monitored separately for examples
that include the spurious feature, and examples without the spurious feature.

⇒ Non-linear is more prone to learning spurious correlations
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Analytical insights

Setup
Matrix of inputs X (n× d), with labels y (n).
We minimize the MSE of the linear model fθ (x) = θ⊤x:

1. (linearly) directly with parameters θ

2. (non-linearly) with quadratic parameterization θ := 1
2

∑d
λ=1 w

2
λvλ

X = UMV⊤ :=

rX∑
λ=1

√
µλuλv

⊤
λ

Solution (gradient flow)
Linear training regime

θλ(t) = θ∗λ + e−µλθ
0
λ t(θ0λ − θ∗λ )

Non-linear training regime

θλ(t) = θ∗λ +
θ∗λ

(e2ỹλt − 1) θ0λ + θ∗λ
(θ0λ − θ∗λ )
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Analytical insights
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Figure: (left) Different input/label correlation (mirrors C-scores exp.) (middle) Label noise
(mirrors exp. with noisy labels) (right) Spurious correlations (mirrors spurious features exp.)
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Lazy vs hasty summary

▶ Embedded curriculum learning mechanism
▶ Depending on the task, can be beneficial or detrimental
▶ Quadratic analytical model that mirrors empirical observations
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Implicit Regularization via Neural Feature Alignment
AISTATS 2021

Aristide Baratin*, TG*, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal
Vincent, Simon Lacoste-Julien
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Motivation

Generalization properties of ftrained

▶ implicit regularization mechanism
e.g. previous paper

▶ generalization bounds
non-vacuous, that actually capture empirical observations

Recall
▶ tangent features are ill-conditioned

feature importance

▶ compared to linear training regime, full training dynamics amplify the implicit
bias towards easy examples

This work: shed light on a dynamical effect on the tangent features?

Outline
1. Empirical study of the tangent features during training

2. Complexity measure
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Tangent features: dynamical spectral bias

Question
How does the conditioning of the tangent features ϕw evolve during training?

Figure: NTK eigenvalues (max,
mean and median), effective
rank and trace ratios during
training of a VGG19 network
on CIFAR10.
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⇒ Dynamical stretching along a few directions as training progresses
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Tangent features alignment
Question
Do tangent features adapt to the task?

Definition
Centered Kernel Alignment (Cortes et al.,
2012)

CKA
(
K,K′) =

Tr (KcK′
c)

∥Kc∥F ∥K′
c∥F

Kc = CKC is the centered kernel using
C = In − 1

n
11⊤

▶ measures similarity between kernels
▶ similarity kernel/task when applied to

the rank-one target kernel
Ky := yy⊤

Figure: Alignment of tangent
features to the target kernel
while training a VGG19
architecture on CIFAR10.
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⇒ The NTK increasingly aligns to the task as training progresses.
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Tangent features: dynamical spectral bias

Question
Do tangent features adapt to the task?
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⇒ Faster alignment towards easier features.
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Generalization guarantees

Uniform bounds: Rademacher complexity
with probability ≥ 1− δ, for functions f ∈ F

Test error(f) ≤ Training error(f) + Complexity(F) +
√

log 1/δ
n

M -ball linear model (standard)

FM = {fw = ⟨ϕ,w⟩ : ∥w∥ ≤M}

RS (FM ) ≤ (M/n) ∥Φ∥F

M -ellipsis linear model
Given any invertible matrix A,

FM =
{
fw = ⟨ϕ,w⟩ :

∥∥A−1w
∥∥ ≤M

}
RS (FM ) ≤ (M/n) ∥ΦA∥F

Sum of linear steps using sequence of feature maps {ϕt}

F{ϕt}
m =

{
fw =

∑
t

⟨ϕt, δwt⟩ : ∥δwt∥ ≤ mt

}

RS
(
F{ϕt}

m

)
≤

∑
t

(mt/n) ∥Φt∥F
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Complexity measure: empirical evaluation
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⇒ Our complexity measure correlates with the test error.
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NTK alignment summary

▶ Dynamical stretching and rotation of the NTK
▶ Implicit bias towards a few relevant directions
▶ Rademacher complexity measure that correlates with test error
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Closing words

Linearization...
▶ EKFAC optimization algorithm
▶ Comparison between linear and non-linear training regimes
▶ Evolution of the NTK during training
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Summary of contributions

▶ EKFAC approximate Fisher Information Matrix
1. New method
2. Optimality results
3. Empirical evaluation of optimization algorithm

▶ Lazy vs Hasty
1. Showed non-linear regime learns easy examples even faster than lazy regime

(embedded curriculum learning mechanism)
2. Consistent picture across 4 different easy/difficult setups
3. Analytical model that mirrors experiments

▶ NTK dynamical alignment
1. Showed empirical stretching and alignment to a few relevant directions
2. Conjecture that it acts as an implicit regularization mechanism
3. New Rademacher complexity measure

▶ NNGeometry (software library)
1. Toolbox with unified API
2. Scales to "large" networks with implicit operations

Questions
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