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Abstract

A recent line of work has identified a so-called
‘lazy regime’ where a deep network can be well
approximated by its linearization around initializa-
tion throughout training. Here we investigate the
comparative effect of the lazy (linear) and feature
learning (non-linear) regimes on subgroups of ex-
amples based on their difficulty. Specifically, we
show that easier examples are given more weight
in feature learning mode, resulting in faster train-
ing compared to more difficult ones. We illustrate
this phenomenon across different ways to quantify
example difficulty, including c-score, label noise,
and in the presence of spurious correlations.

1. Introduction
Understanding the performance of deep learning algorithms
has been the subject of intense research efforts in the past
few years, driven in part by observed phenomena that seem
to defy conventional statistical wisdom (Neyshabur et al.,
2015; Zhang et al., 2017; Belkin et al., 2019). Notably,
many such phenomena have been analyzed rigorously in
simpler contexts of high dimensional linear or random fea-
ture models (Bartlett et al., 2021), which shed a new light on
the crucial role of overparametrization in the performance
of such systems. These results also apply to lazy train-
ing (Chizat et al., 2018), a specific regime where a deep
network can be well approximated by its linearization at ini-
tialization, characterized by the neural tangent kernel (NTK)
(Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al., 2019).

Actual deep learning algorithms have been shown to depart
from these analytical linear models (Chizat et al., 2018).
However, they remain a convenient tool for analysis of deep
learning mechanisms, with several recent works studying the
time varying tangent kernel (Kopitkov & Indelman, 2020;
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Baratin et al., 2021; Paccolat et al., 2021; Fort et al., 2020),
showing how it specializes to the task by stretching in a
few task-relevant directions, while shrinking in less useful
directions. It was argued in (Baratin et al., 2021) that such
a mechanism acts as implicit regularizer, by allowing large
models to adapt their capacity to the task.

Here we continue this line of work, by investigating the
comparative effect of the lazy and feature learning regimes
on the training dynamics of various groups of examples of
increasing difficulty. We highlight what we believe to be
an important aspect of the non-linear dynamics: to hasten
towards learning simple patterns and easy examples, thereby
inducing some form of curriculum or sequentialization of
learning that is less stressed in the lazy (linear) regime.
In the context where easy examples are the ones that dis-
play correlations to some spurious features (Sagawa et al.,
2020b), this observation suggests an enhanced sensitivity to
spurious correlations in the feature learning regime.

2. Preliminaries
We consider neural networks fθ parametrized by θ ∈ Rp

(i.e. weights and biases for all layers), and trained by
minimizing some task-dependent loss function ℓ(θ) :=∑n

i=1 ℓi(fθ(xi)) computed on a training dataset, using vari-
ants of gradient descent,

θ(t+1) = θ(t) − η∇θℓ(θ
(t)), (1)

with some random initialization θ0 and a chosen learning
rate η > 0. A Taylor expansion and the chain rule give the
corresponding updates f (t) := fθ(t) for any network output,
at first order in the learning rate,

f (t+1)(x) ≃ f (t)(x)− η

n∑
i=1

K(t)(x,xi)∇ℓi (2)

which depend on the time-varying tangent kernel
K(t)(x,x′) := ∇θf

(t)(x)⊤∇θf
(t)(x′). The lazy regime

is one where this kernel remains nearly constant throughout
training. Training the network in this regime thus corre-
sponds to training the linear predictor defined by

f̄θ(x) := fθ0(x) + (θ − θ0)
⊤∇θfθ0(x). (3)
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Figure 1. 100 randomly initialized runs of a 4 layers MLP trained on the yin-yang dataset (a) using GD in both a non-linear (α = 1) and
linearized (α = 100) setting. The training losses (b) show a speed-up in the non-linear regime: in order to compare both regimes at equal
progress, we normalize by comparing models extracted at equal training loss thresholds (c), (d) and (e). We observe the differences
∆loss (xtest) = lossfnon-linear (xtest)− lossflinear (xtest) for test points paving the 2d square [−1, 1]2 using a color scale. These differences
are not uniformly spread across examples: instead they suggest a comparative bias of the non-linear regime towards correctly classifying
easy examples (large areas of the same class), whereas difficult examples (e.g. the small disks) are boosted in the linear regime.

In our experiments, following (Chizat et al., 2018), we mod-
ulate the level of ”non-linearity” during training with a scalar
parameter α ≥ 1, by replacing our prediction fθ by

fα
θ (x) := α (fθ (x)− fθ0

(x)) (4)

and by rescaling the learning rate as ηα = η/α2. In this
setup, gradient descent steps in parameter space are rescaled
by 1/α while steps in function space (up to first order) are
in O(1) in α. α can also be viewed as controlling the level
of feature adaptativity, where large values of α result in
linear training where features are not learned. Linearity is
assessed empirically using various metrics (See Appendix
A), including sign similarity that counts the proportion of
ReLUs that keep the same sign since initialization; and
matrix alignment of the tangent kernel and the last non-
softmax layer representation with their initial values. We
will also experiment with α < 1 below, which enhances
adaptivity compared to the standard regime (α = 1).

3. A motivating example on a toy dataset
We first explore the effect of modulating the training regime
for a binary classification task on a toy dataset with 2d inputs
for which we can get a visual intuition. For 100 indepen-
dent runs, we generate 100 training examples uniformly
on [−1, 1]

2 from the yin-yang dataset (fig. 1.a). We use a
fully-connected network with 4 layers and ReLU activations.
We perform 2 training runs for α = 1 and α = 100 using
(full-batch) gradient descent with learning rate 0.01.

Global training speed-up and normalization After the
very first few iterations, we observe a speed-up in training
progress of the non-linear regime (fig. 1.b). This is consis-
tent with previously reported numerical experiments on the
lazy training regime (Chizat et al., 2018, section 3). This
raises the question of whether this acceleration comes from

a global scaling in all directions, or if it prioritizes certain
particular groups of examples. We answer this question
by comparing the training dynamics at equal progress: we
counteract the difference in training speed by normalizing
by the mean training loss, and we compare the linear and
non-linear regimes after both cross common thresholds ((c),
(d) and (e) horizontal lines in fig. 1.b).

Comparing linear and non-linear regimes At every
threshold value, we compute the predictions on test exam-
ples uniformly paving the 2d square. We compare the loss
of both regimes on individual examples by plotting the dif-
ference in loss values ∆loss (xtest) = lossfnon-linear (xtest)−
lossflinear (xtest) (fig. 1.c, 1.d, 1.e). Red (resp. green) areas
indicate a lower test loss for the linearized (resp. non-linear)
model. Remarkably, the resulting picture is not uniform:
these plots suggest that compared to the linear regime, the
non-linear training dynamics speeds up for specific groups
of examples (the large top-right and bottom-left areas) at the
expenses on examples in more intricate areas (both the disks
and the area between the disks and the horizontal boundary).

4. Hastening easy examples
We now experiment with deeper convolutional networks on
CIFAR10, in two setups where the training examples are
split into groups of varying difficulty. For the results shown
below, we trained a ResNet18 with SGD with learning rate
0.01, momentum 0.9 and bach size 125.

C-scores Here we quantify example difficulty using con-
sistency scores (C-scores) (Jiang et al., 2021). Intuitively,
examples with high C-scores are more likely to be well-
classified by models trained on subsets of the dataset that
do not contain them, which can be interpreted as the fact
that they are representative of a large group of examples in
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Figure 2. (Top left) We compute the training accuracies separately on 10 subgroups of CIFAR10 examples ranked by their C-scores.
Training progress is normalized by the mean training loss on the x-axis. Unsurprisingly, in both regimes examples with high C-scores are
learned faster. Remarkably, this ranking is more pronounced in the non-linear regime as we can observe by comparing dashed and solid
lines of the same color. This suggests an increased tiering between groups of varying difficulty. (bottom left) CIFAR10 with 15% label
noise. At equal progress (measured by equal clean examples accuracy), the non-linear regime prioritizes learning clean examples and
nearly ignores noisy examples compared to the linear regime. Simultaneously, the non-linear test accuracy reaches a higher peak. (right)
On the same training run, as a sanity check we observe that the α = 100 training run actually stays in the linear regime throughout since
all metrics stay close to 1, whereas in the α = 1 run, the NTK and representation kernels rotate, and a large part of ReLU signs are flipped.

the dataset. Formally, for each (input, label) pair (x, y) in
a dataset D, we define its empirical consistency profile as
the proportion of models that correctly classify (x, y) when
trained on a size n subset of D that does not include (x, y):

ĈD,n (x, y) = E
D

n∼D [P (f (x;D\ {(x, y)}) = y)] (5)

We obtain a scalar C-score by averaging the consistency
profile over n. The results are shown in fig.2 (top left).
Unsurprisingly, we find that examples with high C-scores
are learned faster during training than examples with low
C-scores in both regimes. Remarkably, this effect is ampli-
fied in the non-linear regime, as we can see by comparing
e.g. the top (resp. bottom) decile in light green (resp dark
blue). This is an instance of an acceleration of the non-linear
regime in the direction of easy examples.

Label noise. Here 15% of the training examples are as-
signed a wrong (random) label. We compute the loss and
accuracy independently on the regular examples with their

true label, and the noisy examples whose label is flipped. In
parallel, we train a copy of the initial model in the linearized
regime with α = 100. The results in fig.2 (bottom left) show
that noisy examples are essentially ignored in the non-linear
regime compared to the linear regime.

5. Spurious correlations
We now examine setups where easy examples are those
with correlations between labels and some spurious fea-
ture (Sagawa et al., 2020b). We experiment with Celeb
A (Liu et al., 2015) and Waterbirds (Wah et al., 2011)
datasets. Our task with CelebA is to classify pictures based
on whether the person is blond or not. The attribute ”the per-
son is a woman” is spuriously correlated with the attribute
”the person is blond”, since the attribute ”blond” is over-
represented amongst women (24% are blond) compared to
men (2% are blond). Our task with Waterbirds is to distin-
guish land birds from water birds (Sagawa et al., 2020a),
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Figure 3. On Celeb A (top row), as training progresses we observe in a first phase that (middle) the training accuracy on the balanced
dataset for men increases faster in the linear regime compared to the training set accuracy amongst women, and (right) this translates to
the balanced test dataset, showing that in this first part the linear regime avoids learning the spurious correlation between blond hair and
woman gender, thus gets better generalization (left) In parallel, the test accuracy on the whole (unbalanced) dataset is better for the linear
run α = 100 during this first phase, suggesting that in this setup, a more linear run incurs more robustness, at least at the beginning of
training. (bottom row) On Waterbirds, we also observe the same hierarchy between the linear α = 100 run and other runs, in the first
training phase. The linear regime is less prone to learning the spurious correlation since the accuracy for the opposite dataset (land birds
on water background and water birds on land background) stays higher while training progresses in the first phase ((middle) and (right)).

whose labels often display spurious correlations with the
background (e.g, lakes for waterbirds, forests for landbirds).

Looking at fig. 3 left, in both setups we identify 2 phases:
in the first phase the test accuracy is higher for the linear
α = 100 run than for other runs. In the second phase all 3
runs seem to converge, with a slight advantage for non-linear
runs in Waterbirds. Taking a closer look at the first phase
in fig. 3 middle and right, we understand this difference in
test accuracy in light of spurious and non-spurious features:
in the non-linear regime, the training dynamics learn the
majority examples faster, at the cost of being more prone to
spurious correlations. This can be seen both on the balanced
training set (fig. 3 middle) and the balanced test set (fig. 3
right).

6. Conclusion
Our work sheds light on qualitative differences between lin-
ear models amenable to analytical treatment (e.g. through
the NTK formalism) and the standard deep learning training
regime. Specifically, we showed certain subgroups of exam-
ples are given more weight in linear training mode than in
non-linear (deep learning) training. Through experiments
on both toy and image datasets, we exposed a unified picture
on these groups of examples: in the spurious correlation
experiments, our results suggest that the linear training dy-
namics is less prone to overfitting on the spurious features,
whereas in the noisy example case, the non-linear training
dynamics is more robust to noise which results in a higher
peak in test accuracy. These two phenomena are however
two sides of the same coin, resulting from a priorization of
easy examples by the non-linear training dynamics.
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A. How to assess linearity of training runs
In order to assess that empirically chosen values for the re-scaling factor α actually forces training into a linear regime, we
compute 3 different metrics on training examples.

• Sign similarity counts the proportion of ReLUs that keep the same sign since initialization.

• Tangent kernel alignment measures the similarity of the tangent kernel matrix K(t) with the initial kernel, in terms of
matrix alignment

• Representation alignment measures the similarity of the last non-softmax layer representation ϕ
(t)
R (x) with its value

at t = 0, in terms of the alignment of the corresponding Gram matrices (K(t)
R )ij = ϕR(xi)

⊤ϕR (xj).

with the kernel alignment (Cristianini et al., 2001) defined as:

KA(K(t),K(0)) =
Tr[K(t)K(0)]

∥K(t)∥F ∥K(0)∥F
(6)

where ∥ · ∥F is the Froebenius norm.

We use these metrics in figure 2 right.

B. Experimental details
Experimental details Celeb A We use 20 000 examples of CelebA to train a ResNet18 classifier on the task of predicting
whether a person is blond or not, using SGD with learning rate 0.01, momentum 0.9 and batch size 100. We also extract
a balanced dataset with 180 (i.e. the total number of blond men in the test set) examples of 4 categories: blond man,
blond woman, non-blond man and non-blond woman. While training progresses, we measure the loss and accuracy on the
subgroups man and woman. Starting from the same initial conditions, we train 3 different classifiers with α ∈ {.5, 1, 100}.

Experimental details Waterbirds We use 4 795 training examples of the Waterbirds dataset. Since the dataset is smaller,
we start from a pre-trained ResNet18 classifier from default PyTorch models (pre-trained on ImageNet). We replace the last
layer with a freshly initialized binary classification layer, and we set batch norm layers to evaluation mode. We train using
SGD with learning rate 0.001, momentum 0.9 and minibatch size 100. From the training set, we extract a balanced dataset
with 180 examples of each 4 groups: land birds on land background, land birds on water background, water bird on land
background, and water bird on land background, that we group in 2 sets: same when the type of bird and the background
agree, and opposite otherwise. While training, we measure the accuracies separately on these 2 sets. We train 3 different
classifiers with α ∈ {.5, 1, 100}.

Experimental details CIFAR10 C-scores We split the dataset CIFAR10 into 40 000 train examples and 10.000 test
examples. Since computing C-scores is computationally expensive, we instead get pre-computed scores from https:
//github.com/pluskid/structural-regularity. We train a ResNet18 network using SGD with learning
rate 0.01, momentum 0.9 and batch size 125. While training, we compute the loss and accuracy separately on 10 subsets of
the training set ranked by increasing C-scores deciles (e.g. examples in the last subset are top-10% c-scores), for both the
training set and test set. We also train a linearized copy of this network (so as to share the same initial conditions) with
α = 100. The α = 1 run is trained for 200 epochs (64 000 SGD iterations) whereas in order to converge the α = 100 run is
trained for 1 000 epochs (320 000 SGD iterations).

Experimental details CIFAR10 noisy labels We use a ResNet18 network trained on CIFAR10 where 15% of the training
examples are assigned a wrong (random) label. We use SGD with learning rate 0.01, momentum 0.9 and bach size 125. We
compute the loss and accuracy independently on the regular examples with their true label, and the noisy examples whose
label is flipped. In parallel, we train a copy of the initial model in the linearized regime with α = 100.

C. Experiments variability
We reproduce the experiments in section 5 in order to assess variability with respect to model initialization and minibatch
ordering.

https://github.com/pluskid/structural-regularity
https://github.com/pluskid/structural-regularity
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Figure 4. same as fig 3 with varying seed (model initialization and minibatch order)


