CONTINUAL LEARNING IN DEEP NETWORKS: AN ANALYSIS OF THE LAST LAYER

Timothée Lesort Thomas George Irina Rish

Université de Montréal, MILA - Quebec Al Institute

Visualization

We study how different output layer types of a deep neural network learn and forget
In continual learning settings. We describe the three factors affecting catastrophic
forgetting in the output layer: (1) weights modifications, (2) interferences, and (3)
projection drift. Our goal is to provide more insights into how different types of
output layers can address (1) and (2). We also propose potential solutions and
evaluate them on several benchmarks. We show that the best-performing output

layer type depends on the data distribution drifts or the amount of data available.

In particular, in some cases where a standard linear layer would fail, it is sufficient
to change the parametrization and get significantly better performance while still
training with SGD. Our results and analysis shed light on the dynamics of the
output layer in continual learning scenarios and help select the best-suited output
layer for a given scenario.

Contribution

« We propose an evaluation of a large panel of output layer types in continual
scenarios: we review the capacity of each layer to learn continually or from a
subset of samples.

« We describe the different sources of performance decrease in continual
learning for the output layer: forgetting, interferences, and projection drifts.

» We review and propose different solutions to address catastrophic forgetting
In the output layer. In particular, we introduce a simplified weight normalization
layer, two masking strategies, and an alternative to Nearest Mean Classifier
using median vectors.

Output Layer Types

For z a latent vector the output layer computes the operation
o=Az+b
It can be rewritten for a single class:
[2[[[| ;]| - cos(£(z, Aj)) + bj = o

Where /(-, -) is the angle between two vectors and ||-|| denotes here the euclidean
norm of a vector.
Removing the bias (Linear_no_bias layer):

IZ[I[[Al - cos(£(z4, A;)) = o;
Normalizing output vectors (Proposed WeightNorm layer):
||| - cos(L(zt, Aj)) = o
Measuring only the angle (CosLayer):
cos(/(z, A;)) = o;

Other output layer based on similarity of training embeddings and test embeddings
can be used such as KNN (K-nearest neighbor), NMC (Nearest Mean Classifier),
LDA (linear discriminant analysis). Those types of classifiers can be very efficient
in CL.

L
o

w0
il
m
n

o

o+

|

S

i

e . —-.
o

Norm

Fig. 1: lllustration of norm (left), bias (middle) and delta bias (right) unbalance at the end of a CIFAR10 continual experiment

with a linear layer.

We propose to apply a masking strategy to avoid the modification of past classes while
learning new ones. For one observation, the masking either enable the modification of
one vector only or to all the vector inside the current batch (group masking).

o
35 0.00014
30) EEE B [u u C
| B H B : 0.00012
25 s 0.00010
2.0 0.00008
6
15 0.00006
10 8 0.00004
T T T T T T T r v 05 10 r T T r r T T r r 0.00002
5 10 15 20 25 30 35 40 45 00 5 10 15 20 25 30 35 40 45 0.00000

Fig. 2: lllustration of Forgetting: normal linear layer vs masked layer. Masking avoids the modifying/forgetting of weights of

other classes.

Incremental Scenarios: CIFAR10 (5 tasks / 2 classes by task), Core50 (10 tasks
/ 5 classes by task): Evaluate the capacity of learning incremental new classes and
distinguishing them from the others.

Lifelong Scenario: Core10Lifelong (8 tasks / 1 env by task / 10 classes by task):

The classes stay the same, but the instances change. These settings evaluate the
capacity of improving at classifying with new data.

Mixed Scenario: Core10Mix (50 tasks / 1 class by task): In this scenario, a new
task is triggered by either a virtual concept drift (new class) or a domain drift (kown
class, new data).

Experiments are run on 8 different task orders. (We also experiment with the ability for
each layer to learn from few samples but it is not presented in this poster.)

Results: Comparison Gradient Based Methods

— Linear — WeightNorm === Linear_no_bias_Masked === _0riginalWeightNorm_Masked --=--- CosLayer_GMasked
= Linear_no_bias —— OriginalWeightNorm === CoslLayer Masked ===+ Linear_ GMasked -+ WeightNorm_GMasked
—— CoslLayer === Linear Masked WeightNorm_Masked - Linear no bias GMasked - OriginalWeightNorm_GMasked

EEEEEEEEEEEEEEEEEE

Fig. 3: Experiments on CIFAR10 (left), Core10Lifelong, and Core50 (Right) on 8 different task orders. We plot the test
accuracy on the full test set for each epoch. We compare the different parameterizations of the linear layer. Vertical lines

represent task transition. The red vertical line represents the end of the first training epoch.

Results: Comparison Gradient Based Methods

with Similarity Based Methods

— CoslLayer —==- (CosLayer Masked - CosLayer GMasked — = KNN MeanLayer
— WeightNorm === WeightNorm_Masked * WeightNorm_GMasked —-- SLDA — - MedianLayer

EEEEEE

1.0

iR
S

0.8

i ® F

1L L

<
o]

test accuracy

e
I

0.2

0.0

1] 5;3 l{I}D lSIID ZIII}{] 25|{]
Epochs
Fig. 4: Comparison between layers trained by gradient descent and layers trained without gradients. Experiments on
CIFAR10, Core50, Core10Lifelong and Core10Mix on 8 different task orders (cf Appendix ??). We plot the test accuracy on

the full test set for each epochs.

The results of the study that the proximity-based methods are the best performing
ones. Among the reparametrizations of the linear layer, the best performing methods
were the proposed weightnorm and coslayer with the proposed single masking strategy
(Incremental Setting). In the lifelong setting, alsmost all reparametrizations of the linear
layer are well working, however, in this case the masking seems to bring instability in
training.

Conclusion

In this paper, we conduct an empirical evaluation of the various output layers of deep
neural networks. This evaluation is the first to be conducted where output layers are
evaluated independently from feature extractor training. It gives us clear insights into
how output layers learn continually. We also showed how different data distribution drift
might affect the output layers differently in lifelong and incremental settings.

We describe three different factors that might cause catastrophic forgetting in a linear
output layer in a continual classification task:

1. The modification of important weight (forgetting)
2. The interferences between output vectors

3. The projection drift: the feature extractor learn new features that change the
representation space and may make the output vectors unsuitable.

We review different methods that aim to address the issues (1) and (2), and we also
proposed a simplified version of weight norm and a masking strategy that improves the
baselines.

